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Context

• Limited area models

• Multiscale and/or nested
systems

• Coupled systems

−→ Which interface conditions ?
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Open boundary problem

Which boundary conditions for
regional models ?

Two-way interaction

How can we connect two
models in a mathematically
correct way ?
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The open boundary problem

A particular case :
one-way nesting

Goal : choose the partial differential operator B in order to

• evacuate the outgoing information

• bring some external knowledge on incoming information
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What is done usually

Old problem in ocean-atmosphere modelling : abundant literature,
numerous conditions proposed, often with no clear conclusions.

However a few OBCs are often recommended in comparative
studies : radiation conditions, Flather condition, sponge layer. . .

Interpretation

The performances of usual conditions are fully consistent with the
following criterion : Bw = Bwext for each incoming characteristic
variable w of the hyperbolic part of the equations (Blayo and Debreu,

Ocean Modelling, 2005).
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Usual methods

Radiation conditions

Based on the Sommerfeld condition:
∂φ

∂t
+ c

∂φ

∂x
= 0

+ local adaptive evaluation of c (Orlanski-like methods)

Performances

• OK for simple idealized testcases, where the flow is dominated by a
single wave

• Poor for complex flows

Interpretation w =
∂φ

∂t
+ c

∂φ

∂x
is the incoming characteristic for the

wave equation.

Eric Blayo (U. Grenoble) Open boundary conditions and coupling methods INM Workshop, Moscow 9 / 43



Usual methods

Flather condition

For free surface 2-D flows (case of an eastern open boundary) :

Sommerfeld condition for free surface:
∂h

∂t
+
p
gh0

∂h

∂x
= 0

1-D approximation of the continuity equation:
∂h

∂t
+ h0

∂u

∂x
= 0

Combination + integration through Γ: u−
r

g

h0
h = uext −

r
g

h0
hext

Performances good results in all comparative studies

Interpretation w1 = u−
√

g

h0
h is the incoming characteristic variable

of the shallow-water system.
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Numerical experiments

MARS model (IFREMER)
(collaboration: F. Vandermeirsch)
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Numerical results

Propagation of a temperature anomaly
Solution after 2 months

(
h = hext

∂U

∂n
= 0
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Numerical results

Float trajectories

- 5-month simulation
- wind forcing
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Numerical results

L2 norm of the error

integrated over 2 months

bathymetry
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General idea

Reference solution (unknown): Lu∗ = f in Ω∗ × [0, T ]
Bu∗ = g on ∂Ω∗ × [0, T ]
u∗(t = 0) = u0

uext: external data (approximation
of u∗)

One is looking for u solution of
Lu = f in Ω× [0, T ]
Bu = g on ∂Ωsol × [0, T ]
Cu = Cuext on Γ× [0, T ]
u(t = 0) = u0 in Ω
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e = u− u∗ error on u
eext = uext − u∗ error on the data

Le = 0 in Ω× [0, T ]
Be = 0 on ∂Ωsol × [0, T ]
Ce = Ceext on Γ× [0, T ]
e(t = 0) = 0 in Ω

→ If one chooses C such that Ceext = 0, then e = 0 (i.e. u = u∗ on Ω)

If one assumes that Luext ' f , then Leext ' 0.

To be solved:

Find C such that Ceext = 0 on Γ, given that Leext = 0 on Ω∗ \ Ω

−→ definition of an absorbing condition (Engquist & Majda, 1977)
On our equations: Halpern, 1986; Nataf et al., 1995; Lie, 2001...
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Derivation of absorbing conditions

Example: 2-D advection-diffusion-reaction equation

Lu =
∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
− ν∆u+ cu = f in IR2×]0,+∞[

Fourier transform: ŵ(x, k, ω) =
1

2π

∫ ∫
w(x, y, t) e−i(ky+ωt) dy dt

Le = 0 =⇒ L̂e = −ν ∂
2ê

∂x2
+ a

∂ê

∂x
+
[
c+ νk2 + i(ω + bk)

]
ê = 0
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Derivation of absorbing conditions


ê− = α exp(λ+x)
ê+ = β exp(λ−x)

with λ± =
1

2ν

»
a±

q
a2 + 4cν + 4ν2k2 + 4iν(ω + bk)

–

=⇒

8>>><>>>:
∂ê−

∂x
− λ+ê− = 0⇒

∂e−

∂x
− Λ+e− = 0

∂ê+

∂x
− λ−ê+ = 0⇒

∂e+

∂x
− Λ−e+ = 0

with Λ±(e) = TF−1(λ±ê)

(Steklov-Poincaré operator)

Ideally: C =

8>>><>>>:
∂

∂x
− Λ− if Ω = IR−

∂

∂x
− Λ+ if Ω = IR+

But pseudo-differential operator (non local, both in time and space).
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Derivation of absorbing conditions

Λ± can be approximated by differential operators, at different orders:

λ±0 =
a± p

2ν
and λ±1 =

a± p
2ν

± i(ω + bk) q

i.e. Λ±0 =
a± p

2ν
Id and Λ±1 =

a± p
2ν

Id± q
∂

∂t
± bq

∂

∂y

where p and q are coefficients to be determined.

Taylor expansion (assuming k and ω small) :

p =
√
a2 + 4cν and q = 1/

√
a2 + 4cν

Minimization of the reflection ratio ρ =
reflected wave

incident wave

0th order: minimize ρ(p) 1st order: minimize ρ(p, q)
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Application to the shallow-water equations

• 0th order (i.e. flat bottom, without friction): w1 = 0
(we recover a classical method of characteristics)

• 1st order (different possible expansions):

• flat bottom, weak bottom friction (r) :
∂w1

∂x
− r

4c
w3 = 0

• no friction, weak topographic slope (α) :

2c
∂w1

∂t
− αu0w1 −

α(u0 + c)
2

w3 = 0
• no friction, strong topographic slope (minimization of the

reflection ratio): a
∂w1

∂t
+ bw1 −

α

2
w3 = 0

where a, b are solutions of a minmax problem.

Numerical experiments −→ to be done
with V. Martin (LAMFA Amiens) and F. Vandermeirsch (IFREMER Brest)
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Formalization of the coupling problem

The two models are fully available.

A formulation of the problem could be:

Find uext and uloc such that
Lloculoc = floc in Ωloc × [0, T ]
Lextuext = fext in Ωext × [0, T ]

uloc = uext et
∂uloc

∂n
=
∂uext

∂n
on Γ× [0, T ]
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However usual coupling methods are ad-hoc simple algorithms in
order to be computationally cheap:

• Run some time steps of the first model

• Send boundary data to the second model

• Run corresponding time steps of the second model

• Send boundary data to the first model

• idem with the next time steps. . .

⇒ They are not fully satisfactory from a mathematical point of view.

Question: can we improve the physical solution of the coupled
system by improving mathematical aspects of the coupling method ?
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Framework: Schwarz methods

8>><>>:
L1u1 = f1 Ω1 × [0, T ]
u1 given at t = 0

B1u1 = g1 ∂Ωext
1 × [0, T ]

C1u1 = C1u2 Γ× [0, T ]

8>><>>:
L2u2 = f2 Ω2 × [0, T ]
u2 given at t = 0

B2u2 = g2 ∂Ωext
2 × [0, T ]

C2u2 = C2u1 Γ× [0, T ]
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Framework: Schwarz methods

8>><>>:
L1u

n+1
1 = f1 Ω1 × [0, T ]

un+1
1 given at t = 0

B1u
n+1
1 = g1 ∂Ωext

1 × [0, T ]

C1u
n+1
1 = C1un
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n+1
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un+1
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B2u
n+1
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C2u
n+1
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Usual coupling methods correspond to one (and only one) iteration, with
some particular choice of C1 and C2.
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Usual coupling methods correspond to one (and only one) iteration, with
some particular choice of C1 and C2.

−→ Is it worth iterating ? (is there an impact on the physics ?)

−→ How to reduce the computation cost ?
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Impact on the physics

Major difficulty There is no idealized ocean or atmosphere
testcase with a known reference solution, in the case of the
coupling of two different models.

However our numerical experiments make us believe that using a
Schwarz iterative method:

• leads to an improved regularity of the coupled solution

• seems to remove a source of error
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Impact on the physics: improved regularity

Testcase #1: coupling a 1/3◦ model of the North Atlantic and a
1/15◦ model of the Bay of Biscay (Cailleau et al., Ocean Modelling, 2008)

3-year simulation - primitive equation model NEMO
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Impact on the physics: improved regularity (2)

Temperature z = 10m
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Impact on the physics: improved regularity (3)
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Impact on the physics: more robust solution

Testcase #2: Simulation of the tropical cyclone Erica (2003), by
coupling

• ROMS: primitive equation ocean model (Shchepetkin-McWilliams, 2005)

• WRF: non hydrostatic atmospheric model (Skamarock-Klemp, 2007)

∆xa = 35km, ∆ta = 180s

∆xo = 18km, ∆to = 1800s

15-day simulation

Boundary Conditions: vertical fluxes for ~τ ,Qnet and F

ρaK
a
z

∂uatm

∂z
(0, t) = ρoK

o
z

∂uoce

∂z
(0, t) = Foa(uatm(0+, t)− uoce(0−, t))
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Boundary layer parameterization

z

hcla

zatm

Couche Limite Atmosphérique

hclo

zoce

Couche Limite Océanique

Km

∆U = uatm(zatm)− uoce(zoce)

typical vertical viscosity profile

Foa(∆U) = CD(u?) |∆U |∆U

with u? solution of

∆U

u?
=

1

k

»
ln

„
zatm

z0

«
− ψm (ζ(u?))

–

Keywords: parameterization of Reynolds terms,
K-profile schemes, Monin-Obukhov theory, bulk
formulas...
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Impact on the physics: more robust solution (2)

15-day simulation (60 6-hour time windows)

Usual method

uatm(x, ti)

uoce(x, ti)

Latmuatm = fatm

ti ti+1

Loceuoce = foce

ti+1 ti+2

Foa(uatm, uoce,R,P)
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Impact on the physics: more robust solution (2)

15-day simulation (60 6-hour time windows)

Usual method

uatm(x, ti)

uoce(x, ti)

Latmuatm = fatm

ti ti+1

Loceuoce = foce

ti+1 ti+2

Foa(uatm, uoce,R,P)

Schwarz method

uatm(x, ti)

uoce(x, ti)

Latmuatm = fatm

ti ti+1

Loceuoce = foce

ti+1 ti+2

Foa(uatm, uoce,R,P)

oui

non
Foa(uatm, uoce,R,P)

k = 9 ?

k = k + 1
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Impact on the physics: more robust solution (3)

10-meter wind (m/s) and sea surface temperature (◦C).
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Impact on the physics: more robust solution (4)

To assess the robustness of the coupled solution: ensemble
simulations w.r.t. uncertain system parameters

• PBL/SL: Mellor-Yamada-Janjic (MYJ) vs Yonsei University (YSU)

• Microphysics: Purdue Lin scheme vs Single-Moment 3-class scheme

• Length of the time windows: 6h vs 3h

Trajectory of the cyclone
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Impact on the physics: more robust solution (5)

Intensity of the cyclone
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Decreasing the cost: absorbing boundary conditions

8>><>>:
L1u

n+1
1 = f1 Ω1 × [0, T ]

un+1
1 given at t = 0

B1u
n+1
1 = g1 ∂Ωext

1 × [0, T ]

C1u
n+1
1 = C1un

2 Γ× [0, T ]

8>><>>:
L2u

n+1
2 = f2 Ω2 × [0, T ]

un+1
2 given at t = 0

B2u
n+1
2 = g2 ∂Ωext

2 × [0, T ]

C2u
n+1
2 = C2un

1 Γ× [0, T ]

Systems satisfied by the errors:

8>><>>:
L1e

n+1
1 = 0 Ω1 × [0, T ]

en+1
1 = 0 at t = 0

B1e
n+1
1 = 0 ∂Ωext

1 × [0, T ]

C1e
n+1
1 = C1en

2 Γ× [0, T ]

8>><>>:
L2e

n+1
2 = 0 Ω2 × [0, T ]

en+1
2 = 0 at t = 0

B2e
n+1
2 = 0 ∂Ωext

2 × [0, T ]

C2e
n+1
2 = C2en

1 Γ× [0, T ]

If one finds C1, C2 such that C1e2 = 0 and/or C2e1 = 0, then

convergence in 2 iterations. −→ absorbing conditions
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shallow water - channel configuration (Martin, 2005)
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Dirichlet-Dirichlet

optimized conditions

Solutions after 2 iterations
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Some recent or ongoing works towards efficient interface
conditions for ocean and atmosphere models

• Shallow water without advection (V. Martin, 2005)

• Shallow water with advection (V. Martin, E.B., on going work)

• Linearized primitive equations (E. Audusse, P. Dreyfuss and B. Merlet,

2009)

• Navier-Stokes (D. Cherel, A. Rousseau, E.B., on going work)

• Coupling between 3D Navier-Stokes and 2D shallow water (M.

Tayachi, starting work with N. Goutal, V. Martin, A. Rousseau)

• 1-D advection-diffusion with variable and discontinuous
coefficients → ocean-atmosphere coupling (F. Lemarié, L. Debreu

and E.B., 2010; C. Japhet, on going work)

• . . .
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