Tensorisation and Convolution

Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Inselstr. 22-26, D-04103 Leipzig, Germany wh@mis.mpg.de
http://www.mis.mpg.de/scicomp/hackbusch e.html

Moskow, November 28, 2010

Overview

Tensorisation

Convolution

- Definition / Multidimensional Convolution / Guiding Model Problem

Analysis of the Problem

- Notations $/ \mathbb{C}^{n}$ and $\ell_{0} /$ Tensor space $\otimes_{j=1}^{d} \ell_{0} /$ Equivalence Relation
- Convolution in ℓ_{0} and $\mathbb{C}^{n} / \otimes_{\delta=1}^{d} \mathbb{C}^{2}, \otimes_{\delta=1}^{d} \ell_{0}$, and polynomials
- Convolution of Tensors
- Induction start: Convolution in \mathbb{C}^{2} / Induction: $\delta-1 \mapsto \delta$

TT or Hierarchical Tensor Format

- Format / Mappings $\varphi_{\delta}^{\prime}, \varphi_{\delta}^{\prime \prime} / \mathrm{TT}$ Representation of the Convolution Result

1 Tensorisation

Let the vector $y \in \mathbb{C}^{n}$ represent the grid values of a function in $[0,1]$:

$$
y_{\mu}=f\left(\frac{\mu+1}{n}\right) \quad(0 \leq \mu \leq n-1) .
$$

Choose, e.g., $n=2^{d}$. Note that

$$
\mathbb{C}^{n} \cong \mathbf{V}:=\bigotimes_{j=1}^{d} \mathbb{C}^{2}
$$

Isomorphism by binary integer representation:
$\mu=\sum_{j=1}^{d} \mu_{j} 2^{j-1}$ with $\mu_{j} \in\{0,1\}$, i.e.,

$$
y_{\mu}=\mathbf{v}_{\mu_{1} \mu_{2} \ldots \mu_{d-1} \mu_{d}} \quad\left(0 \leq \mu \leq n-1, \quad 0 \leq \mu_{j} \leq 1\right)
$$

See Oseledets-Tyrtyshnikov.

Algebraic Function Compression (black-box procedure)

1) Tensorisation: $y \in \mathbb{C}^{n} \longmapsto \mathbf{v} \in \mathbf{V}$ (storage size: $n=2^{d}$)
2) Apply the tensor truncation: $\mathbf{v} \longmapsto \mathbf{v}_{\varepsilon}$
3) Observation: often the data size decreases from $n=2^{d}$ to $O(d)=O(\log n)$.

This observation can be proved under natural conditions of the underlying function (Grasedyck 2010).

2 Convolution

2.1 Definition

Convolution for vectors $v, w \in \mathbb{C}^{n}$ is defined by

$$
u=v \star w \quad \text { with } u_{k}=\sum_{\ell=0}^{k} v_{\ell} w_{k-\ell} \quad(0 \leq k \leq 2 n-2) .
$$

Problem:

Let $v, w \in \mathbb{C}^{n}$ correspond to tensors $\mathbf{v}, \mathbf{w} \in \mathbf{V}$. The computation of $u=v \star w$ corresponding to $\mathbf{u} \in \mathbf{V}$ is abbreviated by

$$
\mathbf{u}:=\mathbf{v} \star \mathbf{w} .
$$

Aim:
The cost of the computation $(\mathbf{v}, \mathbf{w}) \mapsto \mathbf{u}=\mathbf{v} \star \mathbf{w}$ should correspond to the data sizes of \mathbf{v}, \mathbf{w}.
That means, it is not allowed to use $(\mathbf{v}, \mathbf{w}) \mapsto(v, w) \mapsto u=v \star w \mapsto \mathbf{u}$, since then the cost is $>n$.

2.2 Multidimensional Convolution

We recall the convolution of multivariate functions:

$$
\left(\bigotimes_{j=1}^{d} f_{j}\right) \star\left(\bigotimes_{j=1}^{d} g_{j}\right)=\bigotimes_{j=1}^{d}\left(f_{j} \star g_{j}\right)
$$

i.e., multivariate convolution in d variables is equivalent to d 1D convolutions.

Similarly, the convolution of d-dimensional grid functions $\mathbf{v}, \mathbf{w} \in \otimes_{j=1}^{d} \mathbb{C}^{n_{j}}$ defined by

$$
u_{\mathrm{k}}=\sum_{0 \leq \ell \leq \mathrm{k}} v_{\ell} w_{\mathrm{k}-\ell}
$$

satisfies

$$
\left(\bigotimes_{j=1}^{d} v_{j}\right) \star\left(\bigotimes_{j=1}^{d} w_{j}\right)=\bigotimes_{j=1}^{d}\left(v_{j} \star w_{j}\right)
$$

- The tensorisation isomorphism maps the 1 D vectors $v, w \in \mathbb{C}^{n}$ into order- d tensors in $\mathrm{V}=\otimes_{j=1}^{d} \mathbb{C}^{2}$.

Question:

Can we reduce the convolution $\mathbf{u}=\mathbf{v} \star \mathbf{w}$ to d convolutions for each direction j separately?

- First idea:

Maybe not, since the d directions are of articifial nature, whereas the true vector is one-dimensional.

- Second idea:

But we may try!

Closer look:
$v, w \in \mathbb{C}^{n}$, choice of index range: $v=\left(v_{i}\right)_{i=0}^{n-1}, w=\left(w_{i}\right)_{i=0}^{n-1}$,
definition:

$$
u_{k}=\sum_{\ell=0}^{k} v_{\ell} w_{k-\ell} \quad(0 \leq k \leq 2 n-2)
$$

$\Rightarrow u \in \mathbb{C}^{2 n-1}$.
In particular, $v, w \in \mathbb{C}^{2} \Rightarrow v \star w \in \mathbb{C}^{3}$.

Hence, a formula like

$$
\begin{aligned}
& \quad\left(\bigotimes_{j=1}^{d} v_{j}\right) \star\left(\bigotimes_{j=1}^{d} w_{j}\right)=\bigotimes_{j=1}^{d} \underbrace{\left(v_{j} \star w_{j}\right)}_{\in \mathbb{C}^{3}} \\
& \text { for } \quad \mathbf{v}=\bigotimes_{j=1}^{d} v_{j}, \mathbf{w}=\bigotimes_{j=1}^{d} w_{j} \in \mathbf{V}=\bigotimes_{j=1}^{d} \mathbb{C}^{2}
\end{aligned}
$$

does not make sense because the wrong formats.

Nevertheless, ... (Preprint 48, MPI Leipzig, 2010)

2.3 Guiding Model Problem

Decimal Format of integers:

$$
n=\sum_{k \geq 0} n_{k} 10^{k} \quad \text { with } n_{k} \in\{0,1, \ldots, 9\}
$$

Digit-wise addition of $s=178+245$:

1	7	8
2	4	5
3	(11)	(13)

leads to $s=3(11)(13)$ in the Generalised Format

$$
n=\sum_{k \geq 0} n_{k} 10^{k} \quad \text { with } n_{k} \in \mathbb{N}_{0}
$$

- The representation in the generalised format is not unique.
- Conversion into the decimal format by carry-over:

$$
\ldots n_{k+1}\left(a_{k}+10 b_{k}\right) \ldots=\ldots\left(n_{k+1}+b_{k}\right) a_{k} \ldots
$$

3 Analysis of the Problem

3.1 Notations

Isomorphism Φ_{n} (interpretation of the tensor as vector)

$$
\Phi_{n}: \mathbf{V}:=\bigotimes_{j=1}^{d} \mathbb{C}^{2} \rightarrow \mathbb{C}^{n} \quad \text { for } n=2^{d}
$$

defined by

$$
\begin{gathered}
\Phi_{n}: \mathbf{v} \in \mathbf{V} \mapsto v=\left(v_{k}\right)_{k=0}^{n-1} \in \mathbb{C}^{n} \text { with } v_{k}=\mathbf{v}_{i_{1} i_{2} \ldots i_{d}} \\
\text { where } k=\sum_{j=1}^{d} i_{j} 2^{j-1}, i_{j} \in\{0,1\}
\end{gathered}
$$

$3.2 \mathbb{C}^{n}$ and ℓ_{0}

Set of infinite sequences with only finitely many nonzero entries:

$$
\ell_{0}:=\left\{\left(a_{i}\right)_{i \in \mathbb{N}_{0}}: a_{i}=0 \text { for almost all } i \in \mathbb{N}_{0}\right\} .
$$

The embedding of \mathbb{C}^{n} into ℓ_{0} is defined by
$\lambda_{n}: \mathbb{C}^{n} \rightarrow \ell_{0}, \quad v \in \mathbb{C}^{n} \mapsto a=\left(a_{i}\right)_{i \in \mathbb{N}_{0}} \in \ell_{0} \quad$ with $a_{i}:= \begin{cases}v_{i} & \text { for } 0 \leq i \leq n-1, \\ 0 & \text { for } i \geq n .\end{cases}$
Degree of $a \in \ell_{0}$ is defined by

$$
\operatorname{deg}(a):=\max \left\{i \in \mathbb{N}_{0}: a_{i} \neq 0\right\}
$$

Obviously, λ_{n} maps \mathbb{C}^{n} into $a \in \ell_{0}$ with $\operatorname{deg}(a) \leq n-1$.
For convenience we suppress the notation λ_{n} and identify \mathbb{C}^{n} with the subset of sequences of degree $\leq n-1$:

$$
\mathbb{C}^{n} \subset \ell_{0}
$$

Shift operator $S^{m}(m \in \mathbb{Z})$:

$$
b=S^{m}(a) \text { has entries } b_{i}= \begin{cases}a_{i-m} & \text { if } m \leq i \\ 0 & \text { otherwise }\end{cases}
$$

3.3 Tensor space $\otimes_{j=1}^{d} \ell_{0}$

The embedding $\mathbb{C}^{n} \subset \ell_{0}$ (in particularly, $\mathbb{C}^{2} \subset \ell_{0}$) leads to an embedding

$$
\bigotimes_{j=1}^{d} \mathbb{C}^{2} \subset \bigotimes_{j=1}^{d} \ell_{0}
$$

The mapping $\Phi_{n}: \otimes_{j=1}^{d} \mathbb{C}^{2} \rightarrow \mathbb{C}^{n} \subset \ell_{0}$ can be extended to

$$
\begin{aligned}
& \Phi: \bigotimes_{j=1}^{d} \ell_{0} \rightarrow \ell_{0}, \\
& \quad \text { by } \mathbf{v} \mapsto a=\left(a_{i}\right)_{i \in \mathbb{N}_{0}} \quad \text { with } a_{k}=\sum_{\substack{i_{1}, \ldots, i_{d} \in \mathbb{N}_{0} \\
k=\sum_{j=1}^{d} i_{j} 2^{j-1}}} \mathbf{v}_{i_{1} i_{2} \ldots i_{d}} .
\end{aligned}
$$

Note that

- k may possess multiple representations $\sum_{j=1}^{d} i_{j} 2^{j-1}$.
$\square \Phi: \otimes_{j=1}^{d} \ell_{0} \rightarrow \ell_{0}$ is not injective.
\square Only if $\mathbf{v} \in \otimes_{j=1}^{d} \mathbb{C}^{2} \subset \otimes_{j=1}^{d} \ell_{0}$, the indices i_{j} are restricted to $\{0,1\}$ and each integer k has exactly one representation $k=\sum_{j=1}^{d} i_{j} 2^{j-1}$. Then the definition coincides with the original definition of Φ_{n}.

3.4 Equivalence Relation

By means of Φ_{n} we define an equivalence relation in $\otimes_{j=1}^{d} \ell_{0}$ via

$$
\mathbf{v} \sim \mathbf{w} \quad \text { if and only if } \Phi_{n}(\mathbf{v})=\Phi_{n}(\mathbf{w}) \quad\left(\mathbf{v}, \mathbf{w} \in \bigotimes_{j=1}^{d} \ell_{0}\right)
$$

If $\operatorname{deg}(\mathbf{v}):=\operatorname{deg}\left(\Phi_{n}(\mathbf{v})\right) \leq n-1$, there is a unique $\hat{\mathbf{v}} \in \otimes_{j=1}^{d} \mathbb{C}^{2} \subset \otimes_{j=1}^{d} \ell_{0}$ with $\mathbf{v} \sim \hat{\mathbf{v}}$.

The shift operator can be used together with the tensor product.
LEMMA: Let $m=\sum_{j=1}^{d} m_{j} 2^{j-1}$. Then

$$
\boldsymbol{\Phi}_{n}\left(\bigotimes_{j=1}^{d} S^{m_{j}} v^{(j)}\right)=S^{m} \Phi_{n}\left(\bigotimes_{j=1}^{d} v^{(j)}\right)
$$

So far, the action of S is defined for vectors of ℓ_{0} only. For tensors, we set

$$
S^{m} \bigotimes_{j=1}^{d} v^{(j)}:=\left(S^{m} v^{(1)}\right) \otimes \bigotimes_{j=2}^{d} v^{(j)}
$$

Since

$$
v, w \in \mathbb{C}^{n} \Rightarrow u:=v \star w \in \mathbb{C}^{2 n-1} \subset \mathbb{C}^{2 n}
$$

the tensor representation of u requires a tensor of order $d+1$!

The definitions of Φ and, thereby, of the equivalent relation does not need a fixed d.

Since

$$
\Phi\left(\mathbf{v} \otimes\binom{1}{0}\right)=\Phi(\mathbf{v})
$$

for any tensor $\mathbf{v} \in \bigotimes_{j=1}^{k} \ell_{0}$, one obtains

$$
\left.\begin{array}{l}
\mathbf{v} \otimes\binom{1}{0} \sim \mathbf{v} \\
\mathbf{v} \otimes\binom{0}{1} \sim S^{2^{k}} \mathbf{v}
\end{array}\right\} \quad \text { for all } \mathbf{v} \in \bigotimes_{j=1}^{k} \ell_{0}
$$

3.5 Convolution in ℓ_{0} and \mathbb{C}^{n}

For the convolution of vectors $v, w \in \mathbb{C}^{n}$, we consider \mathbb{C}^{n} as embedded in ℓ_{0}. The convolution in ℓ_{0} is given by

$$
a, b \in \ell_{0} \quad \mapsto \quad c:=a \star b \in \ell_{0} \quad \text { with } c_{k}:=\sum_{j=0}^{k} a_{j} b_{k-j}\left(k \in \mathbb{N}_{0}\right)
$$

The vector space ℓ_{0} is isomorphic to the vector space \mathbb{P} of polynomials of finite, but arbitrary degree:

$$
\pi: \ell_{0} \rightarrow \mathbb{P} \quad \text { with } \pi(a)=\sum_{j=0}^{\infty} a_{j} x^{j}
$$

According to the embedding $\mathbb{C}^{n} \subset \ell_{0}$, we also use π as mapping from \mathbb{C}^{n} into \mathbb{P} (onto all polynomials of degree $\leq n-1$).

The convolution in ℓ_{0} corresponds to the (pointwise) multiplication in \mathbb{P} :

$$
c:=a \star b \in \ell_{0} \quad \Leftrightarrow \quad \pi(c)=\pi(a) \pi(b) .
$$

$3.6 \underset{\delta=1}{\stackrel{d}{\otimes}} \mathbb{C}^{2}, \stackrel{d}{\otimes=1} \ell_{0}$, and polynomials

Consider an elementary tensor $\mathbf{v}=\otimes_{\delta=1}^{d} v^{(\delta)}\left(v^{(\delta)} \in \mathbb{C}^{2}\right)$ and the corresponding vector $v=\Phi_{n}(\mathbf{v}) \in \mathbb{C}^{n}$. Applying π to v, we obtain the polynomial $p:=\pi(v)$ with $p(x):=\sum_{j=0}^{n-1} v_{j} x^{j}$.

For ease of notation, we shall write π instead of $\pi \circ \Phi_{n}$, i.e.,

$$
\pi: \bigotimes_{\delta=1}^{d} \mathbb{C}^{2} \rightarrow \mathbb{P} .
$$

The connection between $\mathbf{v}=\bigotimes_{\delta=1}^{d} v^{(\delta)}$ and $v=\Phi_{n}(\mathbf{v})$ on the side of polynomials is given by

$$
p=\pi(\mathbf{v}): \quad p(x)=\prod_{\delta=1}^{d} p_{\delta}\left(x^{2^{\delta-1}}\right) \quad \text { with } p_{\delta}:=\pi\left(v^{(\delta)}\right)
$$

where the linear polynomials $p_{\delta}(\xi)=v_{0}^{(\delta)}+v_{1}^{(\delta)} \xi$ are substituted by $\xi=x^{2^{\delta-1}}$. The definition of $\pi(\mathrm{v})$ from above can be extended from $\otimes_{\delta=1}^{d} \mathbb{C}^{2}$ to $\otimes_{\delta=1}^{d} \ell_{0}$.

We note that $\mathbf{v} \sim \mathbf{w} \Leftrightarrow \pi(\mathbf{v})=\pi(\mathbf{w})$ for $\mathbf{v}, \mathbf{w} \in \otimes_{\delta=1}^{d} \ell_{0}$.

3.7 Convolution of Tensors

The elementary tensors

$$
\begin{aligned}
\mathbf{v}=\bigotimes_{\delta=1}^{d} v^{(\delta)}, & v^{(\delta)} \in \mathbb{C}^{2}, \\
\mathbf{w}=\bigotimes_{\delta=1}^{d} w^{(\delta)}, & w^{(\delta)} \in \mathbb{C}^{2},
\end{aligned}
$$

represent the vectors $v=\Phi_{n}(\mathbf{v})$ and $w=\Phi_{n}(\mathbf{w})$ in \mathbb{C}^{n}.
Therefore the convolution $\mathbf{v} \star \mathbf{w}$ must be defined such that

$$
\Phi_{n}(\mathbf{v} \star \mathbf{w})=\Phi_{n}(\mathbf{v}) \star \Phi_{n}(\mathbf{w}) .
$$

Note that this equation fixes only the equivalence class of $\mathbf{v} \star \mathbf{w}$.

LEMMA. The convolution of $\mathbf{v}=\stackrel{d}{\otimes=1} v^{(\delta)}$ and $\mathbf{w}=\stackrel{d}{\otimes=1} w^{(\delta)} \quad\left(v^{(\delta)}, w^{(\delta)} \in \ell_{0}\right)$ yields

$$
\mathbf{v} \star \mathbf{w}=\bigotimes_{\delta=1}^{d}\left(v^{(\delta)} \star w^{(\delta)}\right), \quad \text { where } v^{(\delta)} \star w^{(\delta)} \in \ell_{0} .
$$

PROOF. Set $p:=\pi(v), p_{\delta}:=\pi\left(v^{(\delta)}\right)$ and $q:=\pi(w), q_{\delta}:=\pi\left(w^{(\delta)}\right)$. By definition, $\mathbf{u}:=\stackrel{d}{\bigotimes}\left(v^{(\delta)} \star w^{(\delta)}\right)$ corresponds to the vector $u=\Phi(\mathbf{u})$ associated with the polynomial

$$
\begin{aligned}
\pi(u)(x) & =\prod_{\delta=1}^{d} \pi\left(v^{(\delta)} \star w^{(\delta)}\right)\left(x^{2^{\delta-1}}\right)=\prod_{\delta=1}^{d} \pi\left(v^{(\delta)}\right)\left(x^{2^{\delta-1}}\right) \cdot \pi\left(w^{(\delta)}\right)\left(x^{2^{\delta-1}}\right) \\
& =\prod_{\delta=1}^{d} p_{\delta}\left(x^{2^{\delta-1}}\right) q_{\delta}\left(x^{2^{\delta-1}}\right)=\left(\prod_{\delta=1}^{d} p_{\delta}\left(x^{2^{\delta-1}}\right)\right)\left(\prod_{\delta=1}^{d} q_{\delta}\left(x^{2^{\delta-1}}\right)\right) \\
& =p(x) q(x)=\pi(v \star w)(x)
\end{aligned}
$$

which proves $u=v \star w$.

3.8 Induction start: Convolution in \mathbb{C}^{2}

LEMMA. The convolution of $v=\binom{\alpha}{\beta}, w=\binom{\gamma}{\delta} \in \mathbb{C}^{2}=\otimes_{j=1}^{1} \mathbb{C}^{2}$ yields

$$
\begin{aligned}
\binom{\alpha}{\beta} \star\binom{\gamma}{\delta} & =\left(\begin{array}{c}
\alpha \gamma \\
\alpha \delta+\beta \gamma \\
\beta \delta \\
0
\end{array}\right)=\binom{\alpha \gamma}{\alpha \delta+\beta \gamma}+S^{2}\binom{\beta \delta}{0} \\
=\Phi(\mathrm{v}) \quad \text { with } \mathbf{v}: & :\binom{\alpha \gamma}{\alpha \delta+\beta \gamma} \otimes\binom{1}{0}+\binom{\beta \delta}{0} \otimes\binom{0}{1} \in \bigotimes_{j=1}^{2} \mathbb{C}^{2} .
\end{aligned}
$$

Furthermore, the shifted vector $\left.S^{1}\binom{\alpha}{\beta} \star\binom{\gamma}{\delta}\right)$ has the tensor representation

$$
\begin{gathered}
S^{1}\left(\binom{\alpha}{\beta} \star\binom{\gamma}{\delta}\right)=\left(\begin{array}{c}
0 \\
\alpha \gamma \\
\alpha \delta+\beta \gamma \\
\beta \delta
\end{array}\right) \\
=\Phi(\mathbf{v}) \text { with } \mathbf{v}:=\binom{0}{\alpha \gamma} \otimes\binom{1}{0}+\binom{\alpha \delta+\beta \gamma}{\beta \delta} \otimes\binom{0}{1} \in \bigotimes_{j=1}^{2} \mathbb{C}^{2} .
\end{gathered}
$$

3.9 Induction: $\delta-1 \mapsto \delta$

LEMMA. Assume $\mathbf{v}, \mathbf{w} \in \otimes_{j=1}^{\delta-1} \mathbb{C}^{2}$ and $x=\binom{\alpha}{\beta}, y=\binom{\gamma}{\delta} \in \mathbb{C}^{2}$. Let the convolution result of \mathbf{v}, \mathbf{w} be known:

$$
\mathbf{v} \star \mathbf{w} \sim \mathbf{a}=\mathbf{a}^{\prime} \otimes\binom{1}{0}+\mathbf{a}^{\prime \prime} \otimes\binom{0}{1} \in \bigotimes_{j=1}^{\delta} \mathbb{C}^{2}
$$

Then, convolution of the tensors $\mathbf{v} \otimes x$ and $\mathbf{w} \otimes y$ yields

$$
(\mathbf{v} \otimes x) \star(\mathbf{w} \otimes y) \sim \mathbf{u}=\mathbf{u}^{\prime} \otimes\binom{1}{0}+\mathbf{u}^{\prime \prime} \otimes\binom{0}{1} \in \bigotimes_{j=1}^{\delta+1} \mathbb{C}^{2}
$$

with

$$
\begin{aligned}
\mathbf{u}^{\prime} & =\mathbf{a}^{\prime} \otimes\binom{\alpha \gamma}{\alpha \delta+\beta \gamma}+\mathbf{a}^{\prime \prime} \otimes\binom{0}{\alpha \gamma} \in \bigotimes_{j=1}^{\delta} \mathbb{C}^{2}, \\
\mathbf{u}^{\prime \prime} & =\mathbf{a}^{\prime} \otimes\binom{\beta \delta}{0}+\mathbf{a}^{\prime \prime} \otimes\binom{\alpha \delta+\beta \gamma}{\beta \delta} \in \bigotimes_{j=1}^{\delta} \mathbb{C}^{2}
\end{aligned}
$$

PROOF. Componentwise convolution implies that

$$
\begin{aligned}
(\mathbf{v} \otimes x) \star(\mathbf{w} \otimes y) \sim(\mathbf{v} \star \mathbf{w}) \otimes z \quad \text { with } z:=x \star y \in \mathbb{C}^{3} \subset \ell_{0} \\
\mathbf{v} \star \mathbf{w} \sim \mathbf{a}^{\prime} \otimes\binom{1}{0}+\mathbf{a}^{\prime \prime} \otimes\binom{0}{1} \text { leads to }
\end{aligned}
$$

$$
(\mathbf{v} \star \mathbf{w}) \otimes z \sim\left(\mathbf{a}^{\prime}+S^{2^{\delta-1}} \mathbf{a}^{\prime \prime}\right) \otimes z
$$

The rule for the shift ('carry over') shows that

$$
S^{2^{\delta-1}} \mathbf{a}^{\prime \prime} \otimes z=S^{2^{\delta-1}}\left(\mathbf{a}^{\prime \prime} \otimes z\right) \sim \mathbf{a}^{\prime \prime} \otimes(S z)
$$

Insert the result for $z=x \star y$:

$$
\begin{aligned}
\mathbf{a}^{\prime} \otimes z & \sim \mathbf{a}^{\prime} \otimes\binom{\alpha \gamma}{\alpha \delta+\beta \gamma} \otimes\binom{1}{0}+\mathbf{a}^{\prime} \otimes\binom{\beta \delta}{0} \otimes\binom{0}{1}, \\
\left(S^{2^{\delta-1}} \mathbf{a}^{\prime \prime}\right) \otimes z & \sim \mathbf{a}^{\prime \prime} \otimes(S z) \sim \mathbf{a}^{\prime \prime} \otimes\binom{0}{\alpha \gamma} \otimes\binom{1}{0}+\mathbf{a}^{\prime \prime} \otimes\binom{\alpha \delta+\beta \gamma}{\beta \delta} \otimes\binom{0}{1} .
\end{aligned}
$$

Summation of both identities yields the assertion of the lemma.

4 TT or Hierarchical Tensor Format

4.1 Format

The TT format $\mathcal{T}_{\mathbf{r}}$ with ranks $\mathbf{r}=\left(r_{1}=2, r_{2}, \ldots, r_{d}\right)$ is characterised algebraically as follows.

For $1 \leq \delta \leq d$ there are subspaces

$$
U_{\delta} \subset \bigotimes_{j=1}^{\delta} \mathbb{C}^{2}
$$

with

$$
U_{1}=\mathbb{C}^{2}
$$

and

$$
\operatorname{dim}\left(U_{\delta}\right)=r_{\delta}, \quad U_{\delta} \subset U_{\delta-1} \otimes \mathbb{C}^{2} \quad(2 \leq \delta \leq d)
$$

A tensor $\mathbf{v} \in \otimes_{j=1}^{d} \mathbb{C}^{2}$ is represented if

$$
\mathbf{v} \in U_{d} .
$$

4.2 Mappings $\varphi_{\delta}^{\prime}, \varphi_{\delta}^{\prime \prime}$

We recall the expression $(\mathbf{v} \otimes x) \star(\mathbf{w} \otimes y) \sim \mathbf{u}=\mathbf{u}^{\prime} \otimes\binom{1}{0}+\mathbf{u}^{\prime \prime} \otimes\binom{0}{1}$ with

$$
\begin{aligned}
\mathbf{u}^{\prime} & =\mathbf{a}^{\prime} \otimes\binom{\alpha \gamma}{\alpha \delta+\beta \gamma}+\mathbf{a}^{\prime \prime} \otimes\binom{0}{\alpha \gamma} \in \bigotimes_{j=1}^{\delta} \mathbb{C}^{2}, \\
\mathbf{u}^{\prime \prime} & =\mathbf{a}^{\prime} \otimes\binom{\beta \delta}{0}+\mathbf{a}^{\prime \prime} \otimes\binom{\alpha \delta+\beta \gamma}{\beta \delta} \in \bigotimes_{j=1}^{\delta} \mathbb{C}^{2}
\end{aligned}
$$

To obtain $\mathbf{a}^{\prime}, \mathbf{a}^{\prime \prime} \in \otimes_{j=1}^{\delta-1} \mathbb{C}^{2}$ from $\mathbf{u}^{\prime}, \mathbf{u}^{\prime \prime} \in \bigotimes_{j=1}^{\delta} \mathbb{C}^{2}$, we introduce

$$
\begin{aligned}
\left(\varphi_{\delta}^{\prime}(\mathbf{v})\right)_{i_{1} i_{2} \ldots i_{\delta-1}} & :=\mathbf{v}_{i_{1} i_{2} \ldots i_{\delta-1}, 0} \\
\left(\varphi_{\delta}^{\prime \prime}(\mathbf{v})\right)_{i_{1} i_{2} \ldots i_{\delta-1}} & :=\mathbf{v}_{i_{1} i_{2} \ldots i_{\delta-1}, 1}
\end{aligned}
$$

i.e.,

$$
\varphi_{\delta}^{\prime}\left(\mathbf{a} \otimes\binom{\alpha}{\beta}\right)=\alpha \mathbf{a}, \quad \varphi_{\delta}^{\prime \prime}\left(\mathbf{a} \otimes\binom{\alpha}{\beta}\right)=\beta \mathbf{a} .
$$

4.3 TT Representation of the Convolution Result

THEOREM. Let the tensors $\mathbf{v}, \mathbf{w} \in \otimes_{j=1}^{d} \mathbb{C}^{2}$ be represented by (possibly different) hierarchical formats using the respective subspaces U_{δ}^{\prime} and $U_{\delta}^{\prime \prime}, 1 \leq \delta \leq d$, satisfying

$$
\begin{array}{lll}
U_{1}^{\prime}=\mathbb{C}^{2}, & U_{\delta}^{\prime} \subset U_{\delta-1}^{\prime} \otimes \mathbb{C}^{2}, & \mathbf{v} \in U_{d}^{\prime} \\
U_{1}^{\prime \prime}=\mathbb{C}^{2}, & U_{\delta}^{\prime \prime} \subset U_{\delta-1}^{\prime \prime} \otimes \mathbb{C}^{2}, & \mathbf{w} \in U_{d}^{\prime \prime}
\end{array}
$$

The subspaces

$$
U_{\delta}:=\operatorname{span}\left\{\varphi_{\delta+1}^{\prime}(\mathbf{x} * \mathbf{y}), \varphi_{\delta+1}^{\prime \prime}(\mathbf{x} * \mathbf{y}): \mathbf{x} \in U_{\delta}^{\prime}, \mathbf{y} \in U_{\delta}^{\prime \prime}\right\} \quad(1 \leq \delta \leq d)
$$

satisfy

$$
U_{1}=\mathbb{C}^{2}, \quad U_{\delta} \subset U_{\delta-1} \otimes \mathbb{C}^{2}, \quad \mathbf{v} * \mathbf{w} \in U_{d}
$$

The dimension of U_{δ} can be bounded by

$$
\operatorname{dim}\left(U_{\delta}\right) \leq 2 \operatorname{dim}\left(U_{\delta}^{\prime}\right) \operatorname{dim}\left(U_{\delta}^{\prime \prime}\right)
$$

5 Concluding Remarks

1) Periodic convolution: Compute $u:=v \star w \in C^{2 n}$ as before and define $u^{p e r}$ by $u_{k}^{p e r}:=u_{k}+u_{k+n}(0 \leq k \leq n-1)$.
2) The general hierarchical format can be used as well.
3) The canonical format or the tensor subspace format ('Tucker') do not seem be work.
