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1 Tensorisation

Let the vector y 2 Cn represent the grid values of a function in [0; 1]:

y� = f
�
�+1
n

�
(0 � � � n� 1) :

Choose, e.g., n = 2d: Note that

Cn �= V : =
Od

j=1
C2:

Isomorphism by binary integer representation:

� =
Pd
j=1 �j2

j�1 with �j 2 f0; 1g; i.e.,

y� = v�1�2:::�d�1�d

�
0 � � � n� 1; 0 � �j � 1

�
:

See Oseledets-Tyrtyshnikov.

Algebraic Function Compression (black-box procedure)

1) Tensorisation: y 2 Cn 7�! v 2 V (storage size: n = 2d)

2) Apply the tensor truncation: v 7�! v"
3) Observation: often the data size decreases from n = 2d to O(d) = O(logn):

This observation can be proved under natural conditions of the underlying

function (Grasedyck 2010).



2 Convolution

2.1 De�nition

Convolution for vectors v; w 2 Cn is de�ned by

u = v ? w with uk =
kX
`=0

v`wk�` (0 � k � 2n� 2) :

Problem:

Let v; w 2 Cn correspond to tensors v;w 2 V: The computation of u = v ? w
corresponding to u 2 V is abbreviated by

u := v ?w:

Aim:

The cost of the computation (v;w) 7! u = v ?w should correspond to the
data sizes of v;w:
That means, it is not allowed to use (v;w) 7! (v; w) 7! u = v ? w 7! u; since
then the cost is > n:



2.2 Multidimensional Convolution

We recall the convolution of multivariate functions:�Od

j=1
fj

�
?

�Od

j=1
gj

�
=
Od

j=1

�
fj ? gj

�
;

i.e., multivariate convolution in d variables is equivalent to d 1D convolutions.

Similarly, the convolution of d-dimensional grid functions v;w 2 Nd
j=1C

nj

de�ned by

uk =
X

0�`�k
v`wk�`

satis�es �Od

j=1
vj

�
?

�Od

j=1
wj

�
=
Od

j=1

�
vj ? wj

�
:



� The tensorisation isomorphism maps the 1D vectors v; w 2 Cn into order-d
tensors in V =

Nd
j=1C2:

Question:

Can we reduce the convolution u = v ?w to d convolutions for each direction

j separately?

� First idea:
Maybe not, since the d directions are of artici�al nature, whereas the true

vector is one-dimensional.

� Second idea:
But we may try!



Closer look:

v; w 2 Cn; choice of index range: v = (vi)n�1i=0 ; w = (wi)
n�1
i=0 ;

de�nition:

uk =
kX
`=0

v`wk�` (0 � k � 2n� 2) :

) u 2 C2n�1:

In particular, v; w 2 C2 ) v ? w 2 C3:

Hence, a formula like�Od

j=1
vj

�
?

�Od

j=1
wj

�
=
Od

j=1

�
vj ? wj

�
| {z }

2C3

for v =
Od

j=1
vj;w =

Od

j=1
wj 2 V =

Od

j=1
C2

does not make sense because the wrong formats.

Nevertheless, ... (Preprint 48, MPI Leipzig, 2010)



2.3 Guiding Model Problem

Decimal Format of integers:

n =
X
k�0

nk10
k with nk 2 f0; 1; : : : ; 9g:

Digit-wise addition of s = 178 + 245 :

1 7 8
2 4 5
3 (11) (13)

leads to s = 3(11)(13) in the Generalised Format

n =
X
k�0

nk10
k with nk 2 N0:

� The representation in the generalised format is not unique.

� Conversion into the decimal format by carry-over:

: : : nk+1 (ak + 10bk) : : : = : : :
�
nk+1 + bk

�
ak : : :



3 Analysis of the Problem

3.1 Notations

Isomorphism �n (interpretation of the tensor as vector)

�n : V :=
dO
j=1

C2 ! Cn for n = 2d

de�ned by

�n : v 2 V 7! v = (vk)
n�1
k=0 2 C

n with vk = vi1i2:::id;

where k =
dX
j=1

ij2
j�1; ij 2 f0; 1g:



3.2 Cn and `0

Set of in�nite sequences with only �nitely many nonzero entries:

`0 := f(ai)i2N0 : ai = 0 for almost all i 2 N0g:
The embedding of Cn into `0 is de�ned by

�n : Cn ! `0; v 2 Cn 7! a = (ai)i2N0 2 `0 with ai :=

(
vi for 0 � i � n� 1;
0 for i � n:

Degree of a 2 `0 is de�ned by

deg(a) := maxfi 2 N0 : ai 6= 0g:
Obviously, �n maps Cn into a 2 `0 with deg(a) � n� 1:

For convenience we suppress the notation �n and identify Cn with the subset of
sequences of degree � n� 1 :

Cn � `0

Shift operator Sm (m 2 Z):

b = Sm(a) has entries bi =

(
ai�m if m � i;
0 otherwise:



3.3 Tensor space
Nd
j=1 `0

The embedding Cn � `0 (in particularly, C2 � `0) leads to an embeddingOd

j=1
C2 �

Od

j=1
`0:

The mapping �n :
Nd
j=1C2 ! Cn � `0 can be extended to

� :
dO
j=1

`0 ! `0 ;

by v 7! a = (ai)i2N0 with ak =
X

i1;:::;id2N0

k=
dP
j=1

ij2
j�1

vi1i2:::id:

Note that

� k may possess multiple representations
Pd
j=1 ij2

j�1:

� � :
Nd
j=1 `0 ! `0 is not injective.

� Only if v 2 Nd
j=1C2 �

Nd
j=1 `0, the indices ij are restricted to f0; 1g and

each integer k has exactly one representation k =
Pd
j=1 ij2

j�1. Then the

de�nition coincides with the original de�nition of �n:



3.4 Equivalence Relation

By means of �n we de�ne an equivalence relation in
Nd
j=1 `0 via

v � w if and only if �n(v) = �n(w) (v;w 2
dO
j=1

`0):

If deg(v) := deg(�n(v)) � n � 1, there is a unique v̂ 2 Nd
j=1C2 �

Nd
j=1 `0

with v � v̂:

The shift operator can be used together with the tensor product.

LEMMA: Let m =
dP
j=1

mj2
j�1: Then

�n

0@ dO
j=1

Smjv(j)

1A = Sm�n
0@ dO
j=1

v(j)

1A :
So far, the action of S is de�ned for vectors of `0 only. For tensors, we set

Sm
dO
j=1

v(j) :=
�
Smv(1)

�



dO
j=2

v(j);



Since

v; w 2 Cn ) u := v ? w 2 C2n�1 � C2n

the tensor representation of u requires a tensor of order d+ 1!

The de�nitions of � and, thereby, of the equivalent relation does not need a

�xed d:

Since

�
�
v 


�
1
0

��
= �(v)

for any tensor v 2 Nk
j=1 `0, one obtains

v 

�
1
0

�
� v

v 

�
0
1

�
� S2

k
v

9=; for all v 2
kO
j=1

`0:



3.5 Convolution in `0 and Cn

For the convolution of vectors v; w 2 Cn, we consider Cn as embedded in `0:
The convolution in `0 is given by

a; b 2 `0 7! c := a ? b 2 `0 with ck :=
kX
j=0

ajbk�j (k 2 N0)

The vector space `0 is isomorphic to the vector space P of polynomials of �nite,
but arbitrary degree:

� : `0 ! P with �(a) =
1X
j=0

ajx
j:

According to the embedding Cn � `0; we also use � as mapping from Cn into
P (onto all polynomials of degree � n� 1).

The convolution in `0 corresponds to the (pointwise) multiplication in P:

c := a ? b 2 `0 , �(c) = �(a)�(b):



3.6
dN
�=1

C2;
dN
�=1

`0; and polynomials

Consider an elementary tensor v =
Nd
�=1 v

(�) (v(�) 2 C2) and the corresponding
vector v = �n(v) 2 Cn. Applying � to v; we obtain the polynomial p := �(v)

with p(x) :=
Pn�1
j=0 vjx

j.

For ease of notation, we shall write � instead of � � �n; i.e.,

� :
dO
�=1

C2 ! P:

The connection between v =
Nd
�=1 v

(�) and v = �n(v) on the side of

polynomials is given by

p = �(v): p(x) =
dY
�=1

p�(x
2��1) with p� := �(v

(�));

where the linear polynomials p�(�) = v
(�)
0 + v

(�)
1 � are substituted by � = x2

��1
.

The de�nition of �(v) from above can be extended from
Nd
�=1C

2 to
Nd
�=1 `0.

We note that v � w, �(v) = �(w) for v;w 2 Nd
�=1 `0:



3.7 Convolution of Tensors

The elementary tensors

v =
dO
�=1

v(�); v(�) 2 C2;

w =
dO
�=1

w(�); w(�) 2 C2;

represent the vectors v = �n(v) and w = �n(w) in Cn.
Therefore the convolution v ?w must be de�ned such that

�n (v ?w) = �n(v) ? �n(w):

Note that this equation �xes only the equivalence class of v ?w:



LEMMA. The convolution of v =
dN
�=1

v(�) and w =
dN
�=1

w(�) (v(�); w(�) 2 `0)

yields

v ?w =
dO
�=1

�
v(�) ? w(�)

�
; where v(�) ? w(�) 2 `0:

PROOF. Set p := �(v); p� := �(v(�)) and q := �(w); q� := �(w(�)): By

de�nition, u :=
dN
�=1

�
v(�) ? w(�)

�
corresponds to the vector u = �(u) associated

with the polynomial

�(u)(x) =
dY
�=1

�(v(�) ? w(�))(x2
��1
) =

dY
�=1

�(v(�))(x2
��1
) � �(w(�))(x2

��1
)

=
dY
�=1

p�(x
2��1)q�(x

2��1) =

0@ dY
�=1

p�(x
2��1)

1A0@ dY
�=1

q�(x
2��1)

1A
= p(x)q(x) = �(v ? w)(x);

which proves u = v ? w:



3.8 Induction start: Convolution in C2

LEMMA. The convolution of v =
�
�
�

�
; w =

�

�

�
2 C2 = N1

j=1C2 yields

�
�
�

�
?
�

�

�
=

0BBB@
�

�� + �
��
0

1CCCA = �
�

��+�

�
+ S2

�
��
0

�

= �(v) with v :=
�

�
��+�

�


�
1
0

�
+
�
��
0

�


�
0
1

�
2
O2

j=1
C2:

Furthermore, the shifted vector S1
��
�
�

�
?
�

�

��
has the tensor representation

S1
��
�
�

�
?
�

�

��
=

0BBB@
0
�

�� + �
��

1CCCA
= �(v) with v :=

�
0
�

�


�
1
0

�
+
�
��+�
��

�


�
0
1

�
2
O2

j=1
C2:



3.9 Induction: � � 1 7! �

LEMMA. Assume v;w 2 N��1
j=1C

2 and x =
�
�
�

�
; y =

�

�

�
2 C2: Let the

convolution result of v;w be known:

v ?w � a = a0 

�
1
0

�
+ a00 


�
0
1

�
2
O�

j=1
C2:

Then, convolution of the tensors v 
 x and w 
 y yields

(v 
 x) ? (w 
 y) � u = u0 

�
1
0

�
+ u00 


�
0
1

�
2
O�+1

j=1
C2

with

u0 = a0 

�

�
��+�

�
+ a00 


�
0
�

�
2
O�

j=1
C2;

u00 = a0 

�
��
0

�
+ a00 


�
��+�
��

�
2
O�

j=1
C2:



PROOF. Componentwise convolution implies that

(v 
 x) ? (w 
 y) � (v ?w)
 z with z := x ? y 2 C3 � `0:

v ?w � a0 

�
1
0

�
+ a00 


�
0
1

�
leads to

(v ?w)
 z �
�
a0 + S2

��1
a00
�

 z:

The rule for the shift (`carry over') shows that

S2
��1
a00 
 z = S2

��1
(a00 
 z) � a00 
 (Sz):

Insert the result for z = x ? y :

a0 
 z � a0 

�

�
��+�

�


�
1
0

�
+ a0 


�
��
0

�


�
0
1

�
;�

S2
��1
a00
�

 z � a00 
 (Sz) � a00 


�
0
�

�


�
1
0

�
+ a00 


�
��+�
��

�


�
0
1

�
:

Summation of both identities yields the assertion of the lemma.



4 TT or Hierarchical Tensor Format

4.1 Format

The TT format Tr with ranks r = (r1 = 2; r2; : : : ; rd) is characterised
algebraically as follows.

For 1 � � � d there are subspaces

U� �
�O
j=1

C2

with

U1 = C2

and

dim(U�) = r�; U� � U��1 
 C2 (2 � � � d).

A tensor v 2 Nd
j=1C2 is represented if

v 2 Ud:



4.2 Mappings '0�; '
00
�

We recall the expression (v 
 x) ? (w 
 y) � u = u0 

�
1
0

�
+ u00 


�
0
1

�
with

u0 = a0 

�

�
��+�

�
+ a00 


�
0
�

�
2
O�

j=1
C2;

u00 = a0 

�
��
0

�
+ a00 


�
��+�
��

�
2
O�

j=1
C2:

To obtain a0; a00 2 N��1
j=1C

2 from u0;u00 2 N�
j=1C2; we introduce�

'0�(v)
�
i1i2:::i��1

:= vi1i2:::i��1;0;�
'00�(v)

�
i1i2:::i��1

:= vi1i2:::i��1;1;

i.e.,

'0�
�
a


�
�
�

��
= �a; '00�

�
a


�
�
�

��
= �a:



4.3 TT Representation of the Convolution Result

THEOREM. Let the tensors v;w 2 Nd
j=1C2 be represented by (possibly di�er-

ent) hierarchical formats using the respective subspaces U 0� and U
00
� ; 1 � � � d;

satisfying

U 01 = C2; U 0� � U
0
��1 
 C

2; v 2 U 0d ;
U 001 = C2; U 00� � U

00
��1 
 C

2; w 2 U 00d :
The subspaces

U� := spanf'0�+1(x � y); '
00
�+1(x � y) : x 2 U

0
�; y 2 U

00
� g (1 � � � d)

satisfy

U1 = C2; U� � U��1 
 C2; v �w 2 Ud:

The dimension of U� can be bounded by

dim(U�) � 2 dim(U 0�) dim(U
00
� ):



5 Concluding Remarks

1) Periodic convolution: Compute u := v ? w 2 C2n as before and de�ne uper
by u

per
k := uk + uk+n (0 � k � n� 1) :

2) The general hierarchical format can be used as well.

3) The canonical format or the tensor subspace format (`Tucker') do not seem

be work.


