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Differential equation

Consider a problem of a potential airflow of a rectangular
wing by a steady-state stream:
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Some properties

The problem is an exterior Neumann’s problem
The domain is infinite

Direct approach in numerical solution requires an
artificial boundary, which will make the domain finite.
Some boundary conditions should be applied on the
new boundary

Let’s try to avoid it by reducing 3D differential
equation to a 2D integral equation



Prandtl’'s equation

Let the solution be a double-layer potential
Put it into our equation and get the following integral
equation:
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Here:

U - surface density of potential



Properties

e Integral does not exist in the classical sense, since it

has strong singularity
e So integral should be treated in sense of Hadamard'’s

finite part:
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e |t is a first kind integral equation, so we can expect
low stability of solution. But, solutions are stable!
This is provided by a singularity of integral.

e There is no known analytical solutions of this integral
equation for most right sides of equation (e.g. no
analytical solution is known for F(x,,»,)=1)



Discretization

e Equation could be discretized using discrete vortex
method
e Introduce two meshes:
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e Suppose that approximate solution is piecewise-
constant function
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e Substitute solution approximation into the equation
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Discretization (cont.)

n

o we’ve got a system of linear algebraic equations:
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Convergence

The following statements for uniform grids were proved
by Lifanov & Poltavsky:
e Integral convergence:
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Meshes

Consider 2 types of meshes:
1. Uniform mesh
2. Tchebyshev’'s mesh:
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Properties of the matrix

e The matrix is dense. Its size is p2 by p2

e The matrix is two level Toplitz matrix in case of uniform
grid

e The matrix has no prescribed structure in case of
Tchebyshev’s grid

e The matrix is rather well conditioned:

p/cond 8 16 32
Uniform 5.70 11.02 21.67
Tchebyshev|18.69 74.65 299.48




Approach to solution

e Since the condition number is “adequate”, we can
replace the matrix in our problem by its structured
approximation

e Using canonical decomposition in this problem was
suggested by Oseledets (2005)

e We're using Tensor Train decomposition



Tensor trains review

e TT decomposition of tensor:
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e QTT decomposition of matrix:
is a TT decomposition of a “virtual tensor”
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e [Q]TT decomposition has many advantages over existing
tensor decompositions



Benefits of QTT format

e There exists a cross approximation method for building
TT decomposition

e Number of parameters is reduced from p” to only
O(4log(p)r’)

e Mat-full-vec operation complexity is O(4r’p’log(p))

e Mat-mat operation complexity is O(4log(p)r’)

e Recompression complexity - O(4r’log(p))



Rank estimation

e The general technique for rank estimation is separation of
variables:
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e There are two useful lemmas for rank estimation



Lemma 1 (Oseledets)

For a 2% x 2° matrix A its QTT compression ranks ry satisfy
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trank stands for tensor rank of matrix and equals to minimal
r, such that
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Lemma 2 (Tyrtyshnikov)

Suppose that

A[iaj]:f(z'iazj) = f(u,v)
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Some recall

In our case elements of matrix are generated by function

which consists of four similar additive terms
Ju? +v°

uyv

F(.)=- \/(XOk ~ X%, )"+ (Vo — yj)z N \/(XOk —x,) +(y,, — yj)z )
o =510 on =7, (o = %)Yy = 7))

B \/(ka —xi)z + (yom — yj_1)2 n \/(ka —xi_l)z + (y()m — yj_1)2
(Xor = %) (Vo — yj—l) (Xor =X ) (Vo — yj—l)




Obviously,
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The key to success is separation of variables in the square root
term.

If square root will be approximated by exponential sums, we’ll
automatically get separation of its argument variables u® + v*



Exponential sums

Result of [Braess, Hackbusch]:

Function
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Can be approximated with r terms exponential sum on the
interval [a; b] with accuracy
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Rank estimations
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Theoretical rank values

Uniform grid
p/eps|10™° |107 |10 |10 |107"°
32 187 206 224 242 (261
64 220 242 263 284 305
128 256 279 303 327 (350
256 292 319 345 371 (398
912 331 360 (389 418 446
1024 371 402 434 465 497




Theoretical rank values

Tchebyshev’s grid
p/eps|10° (107 [10* (107 [107"°

32 898 974 (1050 |1126 (1201
64 1108 1197 1285 1374 (1463
128 1334 1435 1537 1639 (1740
256 1576 1690 (1805 1919 2034
512 1833 (1961 2088 2216 2343
1024 2107 (2247 2388 2528 2668




Preconditioning

e Preconditioner is built using Newton’s method

e VVariants of Newton’s method
Xk :Xk—l(zl_Xk—l)

X, =R[X,,2I-X, )]
X, =R[X, ,2[-X, )] Y, =RlY, ,(2]-X, )]

e All methods have quadratic convergence in practice, but
guadratic convergence is not proved for the last one



Numerical experiments

* Krylov’'s subspaces method is BiCGstab
* The accuracy of method is fixed at a high level

* TT ranks are tuned using known linear
combinations of matrix columns




Uniform grid

P 64 128 256 512 1024 2048

n 4096 16384 | 65536 [262133 |1048576 |4194304
Approx. accuracy | 10°° 10°° 10°° 107° 10°° 10°°
Approximation time |21 sec 38 sec 1 min 1.5min |3 min 6 min
TT rank 25 30 35 40 45 50
Compr. coeff. 107 107 10 107° 107 107°
Precond. time 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec
Solution time 0.2sec |2sec 14sec |[1.5min |7 min 46 min
Iter. count 3 4 6 7 3 9

Total time 23 sec 43 sec 1 min 3 min 10 min |52 min




Tchebyshev's grid

P 32 64 128 256 512

n 1024 4096 16384 |65536 |262144
Relative accuracy |107° 107° 107 10 10
Approx. time 1 min 4 min 9 min 20 min |42 min
TT rank 53 90 130 170 220
Compr. coeff. 107" 1072 1073 107 10°°
Precond. time 10 sec 21 sec 35 sec 58sec |[1.5 min
Solution time 0.07sec [1.13sec [12sec |2min |7 min
Iter. count 3 4 6 9 12
Total time 1.5min |45 min [95min |22 min [51 min




Inner convergence
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Other approaches

o Store solution as QTT vector — failed, since
solution usually has high rank

» Store solution as QTT matrix (since it is 2
dimensional) — probably, it is a good
approach, but it has not been tested yet



