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Introduction

Main problem

Diffusion equation

—V(a(x)Vu(x)) = f(x) in d
{ V(a(x)Vu(x)) = f(x) in QCR (1)

au(x)|oa + 8o = g(09),

where a > 0, a® 4 8% # 0.

@ Flow models: heat conductivity, liquid, gas flows.

o Electrostatics.

@ Financial math.
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Solution methods - GFEM

Galerkin method (“weak”, generalized formulation) (g =0, 5 = 0)

o Find u: (aVu,VqS)LZ(Q) = (f,qb)Lz(Q).
e u and ¢ are assumed to belong to some function class in H*.

Discrete form - FEM

@ suppose u = > t5¢i(x), ¢ € H.

o find matrix I = [(quﬁ;,Vqﬁj)},
@ right-part vector F = (Fq, ..., FN)T, Fi = (f, #).

o Solve Fu = F, where u = (uy, ..., upn)".
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Computational difficulties

@ Curse of dimensionality:
d dimensions, n grid points in each variable. Then N = n?.

@ Il conditioned matrices:
cond(I) ~108 — 10°.
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Main problem
Solution methods

Computational difficulties

@ Curse of dimensionality:
d dimensions, n grid points in each variable. Then N = n?.

@ Il conditioned matrices:
cond(I) ~108 — 10°.

Approaches

@ Use of data compression tensor technics.

@ Use of preconditioners, special solvers.




Model problem
Tensor structures in diffusion problem Black-box (discrete) preconditioner
LS-based (functional) preconditioner

Continuous formulation

Simple problem

{ —~V(aVu)=f inQ=10,1)¢
ulpq = 0.
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Continuous formulation

Simple problem
{ —~V(aVu)=f inQ=10,1)¢
U‘aQ =0.

4

Auxiliary Poisson equation
{ ~Av=f inQ=1[0,1]¢
V‘ag = 0.




Model problem
Tensor structures in diffusion problem Black-box (discrete) preconditioner
LS-based (functional) preconditioner

Continuous formulation

Simple problem

{ —~V(aVu)=f inQ=10,1)¢
ulpq = 0.

Auxiliary Poisson equation
{ ~Av=f inQ=1[0,1]¢
V‘aQ = 0.

“Motivating™ equation

Suppose v is known. Then

—V(aVu) = —Av.

This formulation brings good stuff
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Discrete formulation

o Consider uj, = E uii(x), vp = Z vigi(x), {¢i} € HY(Q).

@ We are to solve (aVuh, Vy) = (Vvh, V).

Where are tensors?

o Suppose ¢i(x) = iy (x1) - - - iy (xa)-
@ Then

Ap=[(Véi V)] = GRH®---@H+---+H® - @ H® G,

G = [(Vei, Vyj)] - 1D stiffness, H = [(vi, ¢;)] - mass matrix.
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Discrete formulation

@ By imposing separability properties on a and f, we can also
get separability for v and w.

o Hence we get O(nd) rather than O(n?) complexity.
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Requirements

Suppose the following conditions:

o We have (aVup, Vo5) = (Vvp, V).

CJ gb;(x) = gO;l(Xl) s gO;d(Xd), iq = 1, ey 1, @ = 1..d,
supp(i) € [Xi—1, Xi41].
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Requirements

Suppose the following conditions:

o We have (aVup, Vo5) = (Vvp, V).
® ¢i(x) =i (x1) - wi,(x4), ig=1,...,n, g=1..d,
supp(yp;i) € [Xi 1 Xit]-

(d
ovi%vr,—z:vkll th), llv —ve|| < ey
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Tensor structures in diffusion problem

Requirements

Suppose the following conditions:
o We have (aVup, Vo5) = (Vvp, V).

® ¢i(x) =i (x1) - wi,(x4), ig=1,...,n, g=1..d,
supp(pi) € [Xi 1, Xit1].

(d
° v RV, kau th), llv —ve|| < ey
1 1 | 1 1 1
o —~— = e IE =l <.
o ,Zlaglg a5 l=e
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Requirements

Suppose the following conditions:

o We have (aVup, V¢;) = (Vvi, V).

® ¢i(x) =i (x1) - wi,(x4), ig=1,...,n, g=1..d,
supp(pi) € [Xi 1, Xit1].

(d
° v;%vr,—z:vkll th), llv— v <ey
1 1 L 1 1 1
o —~— = P R T
P
(9)

a3 >04qg= Iy ooy @ = 1 ooy Gy 1= 1y @
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Result

1 d
ouiNur| zul((l-)ln.ui(ﬂi,)j' Hu_urHSEU-
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Result

(1) (d)

ou;%ur,—z:uk,1 Ui |lu—url] <eu.

0 c,=0(ey)+ O(e2) + O(h), h=1/(n+1), a =1,2.

® ry=ry/hy.
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Result

(1) (d)

ou;%ur,—z:uk,1 Ui llu—ur]| < ey

@ c,=0(ey)+0(ea) + O(h*), h=1/(n+1), a =1,2.

® ry=rily.

o Factors u(9) can be computed independently from the systems
with tridiagonal matrices:

aj—1+a; 1
——— F1(v) uj + aj uit1 = —Fo(vy)

aj—1 Uji—1+
2 aj
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Black-box preconditioner

Left preconditioning

@ We are to solve Ax = f « hard.
@ Apply a non singular matrix B: BAx = Bf.
@ Solve (BA)x = (Bf).

Black-box MatVec approach

@ lterative solvers exploit just Ax operation.
@ Obtaining BA and (BA)x can be difficult.

@ One may apply black-box procedure for Ax — y and By — z
on each iteration (faster).
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Black-box preconditioner

Application to diffusion problem

@ Suppose Au = f - diffusion problem with separability
properties.
o We have an algorithm which gives &1 ~ u = A71f:
o Compute v = A~1f (using FFT, quadratures - fast).
o Apply sweep-based algorithm: & = S[1/a](v).
o Now we have By — z operation: z = S[1/a](A~ty).

@ FFT, quadrature solver, sweep solver - fast methods,
complexity O(n), O(n log n).

As A is sparse, we have
complexity of one iteration of O(n), or O(n log n).
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Numerical results

@ We test complexity S[1/a](v) on v in canonical format with
rank r,, rank(1/a) = ry/,, grid size n.

Table: CPU time versus n, r, =59, ), =1, d =2.

| n [ CPU Time, sec
32 0.069945
64 0.139432
128 0.275668
256 0.515547
512 1.005040
1024 1.987609
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Numerical results

@ We test complexity S[1/a](v) on v in canonical format with
rank r,, rank(1/a) = ry/,, grid size n.

Table: CPU time versus r, = rijatv, d=2,n=256

’ ry ‘ CPU Time, sec
8 0.081331
16 0.147973
32 0.283700
64 0.562467
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Numerical results

o We test complexity S[1/a](v) on v in canonical format with
rank ry, rank(1/a) = ry,, grid size n.

Table: CPU time versus d, r, = 16, n = 256
’ d ‘ CPU Time, sec

2 0.147973
4 0.522492
8 3.120825
16 23.232763

The complexity is of O(d?) (due to Fi(v;), Fo(v)).
Application on full vector N = n9 is of O(N).
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Gradient equation

@ Recall (aVu, Vo) =(Vv,V¢) = (aVu—Vv,Vo¢) =0,
¢ € H.

1
o Require Vu = SVV in the least squares sence:
||[Vu— =Vv|]? — min.
a
1
@ Then Au—V-Vv=0.
a

o Ifv=A"1f thenu= A‘l(VEV)A_lf.
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Gradient equation

@ Suppose [[a]u = f is a diffusion problem with coefficient a,
MNalu = V(aVu).
e Then[1l/a] = V(%V).

@ We have the following preconditioner: A=!I[1/a]A™?
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A[1/a]At =~ T[a]717?

o Hypothesis: A1[[1/a]A ! Ta] =/ + R.

@ In 1D: rank R =1 (in functional view: dim R = 1) (proved).

@ In higher dimension: R has low-rank approximation
(in functional view: R is a compact operator) (hypothesis).
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LS functional vs Black-box discrete

+) Symmetric matrix.

-) Requires 2 Laplace inversions (4(3) FFTs).
-) [IT[a] ™+ — ATIT[1/a]A7| = O(1).
-) In tensor form, has the rank rank(1/a) rank(A~1)2.

(
(
() Convergence depends on jumping of the coefficient.
(
(
(
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LS functional vs Black-box discrete

Black-box

@ (+) Requires 1 Laplace inversion + d - rank sweeps.
+) Intrinsic tensor structure with ranks rank(1/a) rank(A™1).
1) ([ - S(aY)]] = o(h®).

) Convergence depends on rank of 1/a.

-) Non-symmetric matrix.

)
-) Requires positive tensor approximation for 1/a.
)

-) Complicated formulation.
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Common properties

@ We are solving diffusion problem via GMRES with one of
mentioned preconditioners.

@ Initial guess is taken as zero in all cases.

@ For integration in Galerkin matrix assembly, the rectangle
quadrature formula is used.

@ No restarts are made in GMRES.

@ For both preconditioners, the low-rank positive diffusion is
used.
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Dependence on n

Smooth coefficient: 1/a = (x + 1) - € + 2 cos(x + y)

Table: Number of iterations to ||Au — f||/||f|| < 1078, and

CPU time of one iteration.

] n \ Black-box \ time, s \ LS \ time,s ‘

32 5 0.0024 | 3 | 0.002261
64 5 0.0079 | 3 | 0.005482
128 5 0.0293 | 3 | 0.02683
256 5 0.1065 | 3 | 0.093763
512 5 0.5008 | 3 | 0.513589
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Dependence on n

Smooth coefficient: 1/a = (x + 1) - € + 2cos(x + y)
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Figure: Convergence history for Black-box (left) and LS (right):

log 1A“=fll \is number of iteration.
& T
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Dependence on n

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

Figure: Diffusion coefficient a (left) and 1/a (right)
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Dependence on n

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

Table: Number of iterations to ||Au — f||/||f|| < 1078, and

CPU time of one iteration.

| n | Black-box | time, s [ LS | time, s |
32 17 0.0022 | 45 | 0.002394
64 18 0.0063 | 51 | 0.005692
128 18 0.0259 | 53 | 0.023622
256 18 0.0999 | 54 | 0.098719
512 18 0.5275 | 55 | 0.512126
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Dependence on n

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.
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Figure: Convergence history for Black-box (left) and LS (right):

log W vs number of iteration.
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Dependence on jumps and ranks

Rank-2 checkerboard: 1/a = chk(x) -1+ 1-chk(y), where

chi(x) = { 1,[x-16] is odd,

a, [x - 16] is even.

Figure: Diffusion coefficient a (left) and 1/a (right)
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Dependence on jumps and ranks

Rank-2 checkerboard: dependency on «, n = 128.

Table: Number of iterations to ||Au — f||/||f|] < 1078.

] Q \ Black-box \ LS ‘

0.01 14 14
0.1 10 8
10 11 9
100 19 17

1000 23 24

CPU time of one iteration: Black-box - 0.0207 s, LS - 0.024795 s.
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Dependence on jumps and ranks

Rank-2 checkerboard: « = 1000.
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Figure: Convergence history for Black-box (left) and LS (right):

log ||/‘\"|Jf—HfH vs number of iteration.
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Dependence on jumps and ranks

3 test functions:
e 1/a; = if1(x) - if2(y) (rank = 1),
@ 1/ay =if1(x)-if2(y) + (x + 1) -e¥ (rank = 2),

@ 1/a3 =if1(x)-if2(y)+ (x+ 1) €’ + chk(x) -1+ 1-chk(y)
(rank = 4),

where

, (01, xe[0,025], . {1, x€0,0.75),
lﬂ(x)_{ 1, xe(0.251]; lfQ(X)_{ 7, x€[0.75,1],

chk(x) parameter ao = 10.
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Dependence on jumps and ranks

3 test functions:

- 0
150 150

Figure: Reciprocal coefficients 1/a; (left) and 1/a, (right)
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Dependence on jumps and ranks

3 test functions: dependency on rank, n = 128.

Table: Number of iterations to ||Au — f||/||f|| < 1078, and

CPU time of one iteration.

’ coefficient ‘ Black-box ‘ time, s ‘ LS ‘ time, s
a1 (rank = 1, T2 = 70) 6 0.017 | 12 | 0.023088
a, (rank — 2, M — 17 3) 8 0.022 | 6 | 0.024139
a3 (rank = 4, M2 —10.4) 13 0.029 | 8 | 0.022821
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Dependence on jumps and ranks

3 test functions: a = aj.
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Figure: Convergence history for Black-box (left) and LS (right):

log ”A‘erfH vs number of iteration.
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3D Dirichlet sample problems

f=1 n=064
o 1/a; = if1(x)-1f2(y) - 1£3(z),

, {10, x€[0.125,0.25],
1£3(x) = { 1, otherwise;

° 1/ar = 1f1(x) - if2(y) - if3(z) + (x +1) - -0

o 1/a3 = chk(x) + chk(y) + chk(z), a = 1073.



2D Dirichlet problem, f=1
3D and Neumann problems
Numerical results Conclusions

3D Dirichlet sample problems

f=1. n=64.

Table: Number of iterations to ||Au — f||/||f|| < 1078, and

CPU time of one iteration.

’ coefficient ‘ Black-box ‘ time, s ‘ LS ‘ time, s

ap 12 0.5478 | 24 | 0.758098
az 12 0.7107 | 17 | 0.746054
as 21 0.8062 | 23 | 0.744929
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3D Neumann problems

f = cos(mx) cos(my) cos(nz). n = 64.
o 1/a; = if1(x)-1f2(y) - 1£3(z),

, {10, x€[0.125,0.25],
1£3(x) = { 1, otherwise;

° 1/ar = 1f1(x) - if2(y) - if3(z) + (x +1) - -0

o 1/a3 = chk(x) + chk(y) + chk(z), a = 1073.
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3D Neumann problems

f = cos(mx) cos(my) cos(nz). n = 64.

Table: Number of iterations to ||Au — f||/||f|| < 1078, and

CPU time of one iteration.

’ coefficient ‘ Black-box ‘ time, s ‘ LS ‘ time, s

ai 13 0.6168 | 27 | 0.841716
as 25 0.7268 | 30 | 0.830226
as 15 0.8690 | 18 | 0.835752
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Sample problem

Sample problem from the Society of Petroleum Engineers
benchmark. n = 512, max(a) = 1000, min(a) = 1.

Figure: Diffusion coefficient a (left) and solution u (right)

LS preconditioner: 29 iterations, time of one iteration 0.526171 s.
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@ Proposed and compared two preconditioners for diffusion
problem.

@ Preconditioners can be applied in canonical tensor format, or
full format, with complexity O(n) and O(N), correspondingly.

@ For each coefficient can be chosen an optimal algorithm.

Future plans:

@ Application to other PDEs (convection/reaction, etc; arbitrary
domains).

@ Further improvements of algorithms.
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Numerical results Conclusions

Thank you for your attention.
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