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Introduction

Main problem
Diffusion equation{

−∇(a(x)∇u(x)) = f (x) in Ω ⊂ Rd

αu(x)|∂Ω + β ∂u
∂n |∂Ω = g(∂Ω),

(1)

where a > 0, α2 + β2 6= 0.

Examples
Flow models: heat conductivity, liquid, gas flows.
Electrostatics.
Financial math.
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Solution methods - GFEM

Galerkin method (“weak”, generalized formulation) (g ≡ 0, β = 0)

Find u: (a∇u,∇φ)L2(Ω) = (f , φ)L2(Ω).

u and φ are assumed to belong to some function class in H1.

Discrete form - FEM

suppose u =
∑
i

uiφi(x), φi ∈ H1.

find matrix Γ =
[
(a∇φi,∇φj)

]
,

right-part vector F = (F1, ...,FN)T , Fi = (f , φi).

Solve Γu = F , where u = (u1, ..., uN)T .
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Main problem
Solution methods

GFEM

Computational difficulties
Curse of dimensionality:
d dimensions, n grid points in each variable. Then N = nd .
Ill conditioned matrices:
cond(Γ) ∼108 − 109.

Approaches
Use of data compression tensor technics.
Use of preconditioners, special solvers.
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Model problem
Black-box (discrete) preconditioner
LS-based (functional) preconditioner

Continuous formulation

Simple problem {
−∇(a∇u) = f in Ω = [0, 1]d

u|∂Ω = 0.

Auxiliary Poisson equation{
−∆v = f in Ω = [0, 1]d

v |∂Ω = 0.

“Motivating“ equation
Suppose v is known. Then

−∇(a∇u) = −∆v .

This formulation brings good stuff
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Discrete formulation

Galerkin formulation

Consider uh =
∑
i

uiφi(x), vh =
∑
i

viφi(x), {φi} ∈ H1(Ω).

We are to solve (a∇uh,∇φj) = (∇vh,∇φj).

Where are tensors?
Suppose φi(x) = ϕi1(x1) · · ·ϕid (xd ).
Then

∆h =
[
(∇φi,∇φj)

]
= G ⊗H⊗· · ·⊗H + · · ·+H⊗· · ·⊗H⊗G ,

G = [(∇ϕi ,∇ϕj)] - 1D stiffness, H = [(ϕi , ϕj)] - mass matrix.
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Discrete formulation

Why tensors?
By imposing separability properties on a and f , we can also
get separability for v and u.
Hence we get O(nd) rather than O(nd ) complexity.
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Requirements

Suppose the following conditions:

We have (a∇uh,∇φj) = (∇vh,∇φj).
φi(x) = ϕi1(x1) · · ·ϕid (xd ), iq = 1, ..., n, q = 1..d ,
supp(ϕi ) ∈ [xi−1, xi+1].

vi ≈ vr ,i =
rv∑

k=1
v (1)
k,i1 · · · v

(d)
k,id

, ||v − vr || ≤ εv

1
ai
≈ 1

ar ,i
=

r1/a∑
l=1

1

a(1)
l ,id

· · · 1

a(d)
l ,i1

, ||1
a
− 1

ar
|| ≤ εa

a(q)
l ,i > 0, q = 1, ..., d , l = 1, ..., r1/a, i = 1, ..., n
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Result

Then we get:

ui ≈ ur ,i =
ru∑

k=1
u(1)
k,i1 · · · u

(d)
k,id

, ||u − ur || ≤ εu.

εu = O(εv ) + O(εa) + O(hα), h = 1/(n + 1), α = 1, 2.
ru = r1/arv .

Factors u(q) can be computed independently from the systems
with tridiagonal matrices:

ai−1 ui−1 +
ai−1 + ai

2
F1(vr ) ui + ai ui+1 =

1
ai

F0(vr )
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Black-box preconditioner

Left preconditioning
We are to solve Ax = f ← hard.
Apply a non singular matrix B : BAx = Bf .
Solve (BA)x = (Bf ).

Black-box MatVec approach
Iterative solvers exploit just Ax operation.
Obtaining BA and (BA)x can be difficult.

One may apply black-box procedure for Ax → y and By → z
on each iteration (faster).
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Black-box (discrete) preconditioner
LS-based (functional) preconditioner

Black-box preconditioner

Application to diffusion problem
Suppose Au = f - diffusion problem with separability
properties.
We have an algorithm which gives ũ ≈ u = A−1f :

Compute v = ∆−1f (using FFT, quadratures - fast).
Apply sweep-based algorithm: ũ = S [1/a](v).

Now we have By → z operation: z = S [1/a](∆−1y).

FFT, quadrature solver, sweep solver - fast methods,
complexity O(n), O(n log n).

As A is sparse, we have
complexity of one iteration of O(n), or O(n log n).
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Numerical results

We test complexity S [1/a](v) on v in canonical format with
rank rv , rank(1/a) = r1/a, grid size n.

Table: CPU time versus n, rv = 59, r1/a = 1, d = 2.

n CPU Time, sec
32 0.069945
64 0.139432
128 0.275668
256 0.515547
512 1.005040
1024 1.987609
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Numerical results

We test complexity S [1/a](v) on v in canonical format with
rank rv , rank(1/a) = r1/a, grid size n.

Table: CPU time versus ru = r1/arv , d = 2, n = 256

ru CPU Time, sec
8 0.081331
16 0.147973
32 0.283700
64 0.562467
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Numerical results

We test complexity S [1/a](v) on v in canonical format with
rank rv , rank(1/a) = r1/a, grid size n.

Table: CPU time versus d , ru = 16, n = 256

d CPU Time, sec
2 0.147973
4 0.522492
8 3.120825
16 23.232763

The complexity is of O(d3) (due to F1(vr ), F0(vr )).
Application on full vector N = nd is of O(N).
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Gradient equation

Recall (a∇u,∇φ) = (∇v ,∇φ) ⇒ (a∇u −∇v ,∇φ) = 0,
φ ∈ H1.

Require ∇u =
1
a
∇v in the least squares sence:

||∇u − 1
a
∇v ||2 → min.

Then ∆u −∇1
a
∇v = 0.

If v = ∆−1f , then u = ∆−1(∇1
a
∇)∆−1f .
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Gradient equation

Suppose Γ[a]u = f is a diffusion problem with coefficient a,
Γ[a]u = ∇(a∇u).

Then Γ[1/a] = ∇(
1
a
∇).

We have the following preconditioner: ∆−1Γ[1/a]∆−1
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∆−1Γ[1/a]∆−1 ≈ Γ[a]−1?

Hypothesis: ∆−1Γ[1/a]∆−1 Γ[a] = I + R .

In 1D: rank R = 1 (in functional view: dimR = 1) (proved).
In higher dimension: R has low-rank approximation
(in functional view: R is a compact operator) (hypothesis).
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LS functional vs Black-box discrete

LS
(+) Simple explicit operator form.
(+) Symmetric matrix.
(±) Convergence depends on jumping of the coefficient.
(-) Requires 2 Laplace inversions (4(3) FFTs).
(-) ||Γ[a]−1 −∆−1Γ[1/a]∆−1|| = O(1).
(-) In tensor form, has the rank rank(1/a) rank(∆−1)2.
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Numerical results

Model problem
Black-box (discrete) preconditioner
LS-based (functional) preconditioner

LS functional vs Black-box discrete

Black-box
(+) Requires 1 Laplace inversion + d · rank sweeps.
(+) Intrinsic tensor structure with ranks rank(1/a) rank(∆−1).
(+) ||Γ[a]−1 − S(∆−1)|| = O(hα).
(±) Convergence depends on rank of 1/a.
(-) Non-symmetric matrix.
(-) Requires positive tensor approximation for 1/a.
(-) Complicated formulation.
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Conclusions

Common properties

We are solving diffusion problem via GMRES with one of
mentioned preconditioners.
Initial guess is taken as zero in all cases.
For integration in Galerkin matrix assembly, the rectangle
quadrature formula is used.
No restarts are made in GMRES.
For both preconditioners, the low-rank positive diffusion is
used.
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Dependence on n

Smooth coefficient: 1/a = (x + 1) · ey + 2 cos(x + y)

Table: Number of iterations to ||Au − f ||/||f || < 10−8, and

CPU time of one iteration.

n Black-box time, s LS time,s
32 5 0.0024 3 0.002261
64 5 0.0079 3 0.005482
128 5 0.0293 3 0.02683
256 5 0.1065 3 0.093763
512 5 0.5008 3 0.513589
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2D Dirichlet problem, f=1
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Conclusions

Dependence on n

Smooth coefficient: 1/a = (x + 1) · ey + 2 cos(x + y)

Figure: Convergence history for Black-box (left) and LS (right):

log ||Au−f ||
||f || vs number of iteration.
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Conclusions

Dependence on n

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

Figure: Diffusion coefficient a (left) and 1/a (right)
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Numerical results

2D Dirichlet problem, f=1
3D and Neumann problems
Conclusions

Dependence on n

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

Table: Number of iterations to ||Au − f ||/||f || < 10−8, and

CPU time of one iteration.

n Black-box time, s LS time, s
32 17 0.0022 45 0.002394
64 18 0.0063 51 0.005692
128 18 0.0259 53 0.023622
256 18 0.0999 54 0.098719
512 18 0.5275 55 0.512126
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Dependence on n

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

Figure: Convergence history for Black-box (left) and LS (right):
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2D Dirichlet problem, f=1
3D and Neumann problems
Conclusions

Dependence on jumps and ranks

Rank-2 checkerboard: 1/a = chk(x) · 1 + 1 · chk(y), where

chk(x) =

{
1, [x · 16] is odd ,
α, [x · 16] is even.

Figure: Diffusion coefficient a (left) and 1/a (right)
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2D Dirichlet problem, f=1
3D and Neumann problems
Conclusions

Dependence on jumps and ranks

Rank-2 checkerboard: dependency on α, n = 128.

Table: Number of iterations to ||Au − f ||/||f || < 10−8.

α Black-box LS
0.01 14 14
0.1 10 8
10 11 9
100 19 17
1000 23 24

CPU time of one iteration: Black-box - 0.0207 s, LS - 0.024795 s.
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2D Dirichlet problem, f=1
3D and Neumann problems
Conclusions

Dependence on jumps and ranks

Rank-2 checkerboard: α = 1000.

Figure: Convergence history for Black-box (left) and LS (right):

log ||Au−f ||
||f || vs number of iteration.
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2D Dirichlet problem, f=1
3D and Neumann problems
Conclusions

Dependence on jumps and ranks

3 test functions:
1/a1 = if1(x) · if2(y) (rank = 1),
1/a2 = if1(x) · if2(y) + (x + 1) · ey (rank = 2),
1/a3 = if1(x) · if2(y) + (x + 1) · ey + chk(x) · 1 + 1 · chk(y)
(rank = 4),

where

if1(x) =

{
0.1, x ∈ [0, 0.25],
1, x ∈ (0.25, 1];

if2(x) =

{
1, x ∈ [0, 0.75),
7, x ∈ [0.75, 1],

chk(x) parameter α = 10.
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Dependence on jumps and ranks

3 test functions:

Figure: Reciprocal coefficients 1/a1 (left) and 1/a2 (right)
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2D Dirichlet problem, f=1
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Conclusions

Dependence on jumps and ranks

3 test functions: dependency on rank, n = 128.

Table: Number of iterations to ||Au − f ||/||f || < 10−8, and

CPU time of one iteration.

coefficient Black-box time, s LS time, s
a1 (rank = 1, max

min = 70) 6 0.017 12 0.023088
a2 (rank = 2, max

min = 11.3) 8 0.022 6 0.024139
a3 (rank = 4, max

min = 10.4) 13 0.029 8 0.022821
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2D Dirichlet problem, f=1
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Conclusions

Dependence on jumps and ranks

3 test functions: a = a1.

Figure: Convergence history for Black-box (left) and LS (right):

log ||Au−f ||
||f || vs number of iteration.
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3D Dirichlet sample problems

f = 1. n = 64.
1/a1 = if1(x) · if2(y) · if3(z),

if3(x) =

{
10, x ∈ [0.125, 0.25],
1, otherwise;

1/a2 = if1(x) · if2(y) · if3(z) + (x + 1) · ey · 1
1 + 10z

;

1/a3 = chk(x) + chk(y) + chk(z), α = 10−3.
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3D Dirichlet sample problems

f = 1. n = 64.

Table: Number of iterations to ||Au − f ||/||f || < 10−8, and

CPU time of one iteration.

coefficient Black-box time, s LS time, s
a1 12 0.5478 24 0.758098
a2 12 0.7107 17 0.746054
a3 21 0.8062 23 0.744929
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3D Neumann problems

f = cos(πx) cos(πy) cos(πz). n = 64.
1/a1 = if1(x) · if2(y) · if3(z),

if3(x) =

{
10, x ∈ [0.125, 0.25],
1, otherwise;

1/a2 = if1(x) · if2(y) · if3(z) + (x + 1) · ey · 1
1 + 10z

;

1/a3 = chk(x) + chk(y) + chk(z), α = 10−3.
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3D Neumann problems

f = cos(πx) cos(πy) cos(πz). n = 64.

Table: Number of iterations to ||Au − f ||/||f || < 10−8, and

CPU time of one iteration.

coefficient Black-box time, s LS time, s
a1 13 0.6168 27 0.841716
a2 25 0.7268 30 0.830226
a3 15 0.8690 18 0.835752
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Sample problem

Sample problem from the Society of Petroleum Engineers
benchmark. n = 512, max(a) = 1000, min(a) = 1.

Figure: Diffusion coefficient a (left) and solution u (right)

LS preconditioner: 29 iterations, time of one iteration 0.526171 s.
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Proposed and compared two preconditioners for diffusion
problem.
Preconditioners can be applied in canonical tensor format, or
full format, with complexity O(n) and O(N), correspondingly.
For each coefficient can be chosen an optimal algorithm.

Future plans:
Application to other PDEs (convection/reaction, etc; arbitrary
domains).
Further improvements of algorithms.
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Thank you for your attention.
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