Tensor Approximations for Elliptic PDEs with Jumping Coefficients

${\sf Sergey}\ {\sf Dolgov}^1$

¹Moscow Institute of Physics and Technology www.mipt.ru Institute of Numerical Mathematics, Moscow, Russia www.inm.ras.ru

Tensor Methods in Multi-Dimensional Boundary-Value and Spectral problems MPI MiS Leipzig, May 3-5, 2010

Main problem Solution methods

(1)

Introduction

Main problem

Diffusion equation

$$\begin{cases} -\nabla(\mathbf{a}(\mathbf{x})\nabla u(\mathbf{x})) = f(\mathbf{x}) & \text{in } \Omega \subset \mathbb{R}^d \\ \alpha u(\mathbf{x})|_{\partial\Omega} + \beta \frac{\partial u}{\partial \mathbf{n}}|_{\partial\Omega} = g(\partial\Omega), \end{cases}$$

where
$$a > 0$$
, $\alpha^2 + \beta^2 \neq 0$.

Examples

- Flow models: heat conductivity, liquid, gas flows.
- Electrostatics.
- Financial math.

Main problem Solution methods

Solution methods - GFEM

Galerkin method ("weak", generalized formulation) ($g\equiv$ 0, eta= 0)

• Find
$$u: (a\nabla u, \nabla \phi)_{L_2(\Omega)} = (f, \phi)_{L_2(\Omega)}.$$

• u and ϕ are assumed to belong to some function class in H^1 .

Discrete form - FEM

• suppose
$$u = \sum_{i} u_i \phi_i(\mathbf{x}), \ \phi_i \in H^1$$
.

- find matrix $\Gamma = [(a\nabla \phi_{\mathbf{i}}, \nabla \phi_{\mathbf{j}})]$,
- right-part vector $F = (F_1, ..., F_N)^T$, $F_i = (f, \phi_i)$.
- Solve $\Gamma \mathbf{u} = F$, where $\mathbf{u} = (u_1, ..., u_N)^T$.

Main problem Solution methods

GFEM

Computational difficulties

- Curse of dimensionality: *d* dimensions, *n* grid points in each variable. Then $N = n^d$.
- III conditioned matrices: $cond(\Gamma) \sim 10^8 - 10^9$.

Main problem Solution methods

GFEM

Computational difficulties

- Curse of dimensionality:
 d dimensions, n grid points in each variable. Then N = n^d.
- III conditioned matrices: $cond(\Gamma) \sim 10^8 - 10^9$.

Approaches

- Use of data compression tensor technics.
- Use of preconditioners, special solvers.

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

A B > A B > A

э

Continuous formulation

Simple problem

$$\begin{cases} -\nabla(a\nabla u) = f \text{ in } \Omega = [0,1]^d \\ u|_{\partial\Omega} = 0. \end{cases}$$

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

< 一型

Continuous formulation

Simple problem

$$\left(\begin{array}{c} -
abla(a
abla u) = f & \text{in } \Omega = [0,1]^d \\ u|_{\partial\Omega} = 0. \end{array}
ight.$$

Auxiliary Poisson equation

$$\begin{cases} -\Delta v = f & \text{in } \Omega = [0, 1]^d \\ v|_{\partial \Omega} = 0. \end{cases}$$

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

Continuous formulation

Simple problem

$$\left(\begin{array}{c} -
abla(a
abla u) = f & \text{in } \Omega = [0,1]^d \\ u|_{\partial\Omega} = 0. \end{array}
ight.$$

Auxiliary Poisson equation

$$\begin{cases} -\Delta v = f & \text{in } \Omega = [0, 1]^d \\ v|_{\partial \Omega} = 0. \end{cases}$$

"Motivating" equation

Suppose v is known. Then

$$-\nabla(a\nabla u)=-\Delta v.$$

This formulation brings good stuff

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discrete formulation

Galerkin formulation

• Consider
$$u_h = \sum_{\mathbf{i}} u_{\mathbf{i}} \phi_{\mathbf{i}}(\mathbf{x}), v_h = \sum_{\mathbf{i}} v_{\mathbf{i}} \phi_{\mathbf{i}}(\mathbf{x}), \{\phi_{\mathbf{i}}\} \in H^1(\Omega).$$

• We are to solve
$$(a\nabla u_h, \nabla \phi_j) = (\nabla v_h, \nabla \phi_j).$$

Where are tensors?

• Suppose
$$\phi_{\mathbf{i}}(\mathbf{x}) = \varphi_{i_1}(x_1) \cdots \varphi_{i_d}(x_d)$$
.

Then

$$\Delta_{h} = \left[\left(\nabla \phi_{\mathbf{i}}, \nabla \phi_{\mathbf{j}} \right) \right] = G \otimes H \otimes \cdots \otimes H + \cdots + H \otimes \cdots \otimes H \otimes G,$$

 $G = [(\nabla \varphi_i, \nabla \varphi_j)]$ - 1D stiffness, $H = [(\varphi_i, \varphi_j)]$ - mass matrix.

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

Discrete formulation

Why tensors?

- By imposing separability properties on *a* and *f*, we can also get separability for *v* and *u*.
- Hence we get O(nd) rather than $O(n^d)$ complexity.

Requirements

Suppose the following conditions:

• We have
$$(a\nabla u_h, \nabla \phi_j) = (\nabla v_h, \nabla \phi_j).$$

•
$$\phi_{i}(\mathbf{x}) = \varphi_{i_{1}}(x_{1}) \cdots \varphi_{i_{d}}(x_{d}), i_{q} = 1, ..., n, q = 1..d,$$

 $\operatorname{supp}(\varphi_{i}) \in [x_{i-1}, x_{i+1}].$

Requirements

Suppose the following conditions:

• We have
$$(a\nabla u_h, \nabla \phi_j) = (\nabla v_h, \nabla \phi_j).$$

•
$$\phi_{\mathbf{i}}(\mathbf{x}) = \varphi_{i_1}(x_1) \cdots \varphi_{i_d}(x_d), \ i_q = 1, ..., n, \ q = 1..d,$$

 $\operatorname{supp}(\varphi_i) \in [x_{i-1}, x_{i+1}].$

•
$$\mathbf{v}_{\mathbf{i}} \approx \mathbf{v}_{r,\mathbf{i}} = \sum_{k=1}^{r_{\mathbf{v}}} \mathbf{v}_{k,i_1}^{(1)} \cdots \mathbf{v}_{k,i_d}^{(d)}, ||\mathbf{v} - \mathbf{v}_r|| \le \varepsilon_{\mathbf{v}}$$

Requirements

Suppose the following conditions:

• We have
$$(a\nabla u_h, \nabla \phi_j) = (\nabla v_h, \nabla \phi_j).$$

•
$$\phi_{i}(\mathbf{x}) = \varphi_{i_{1}}(x_{1}) \cdots \varphi_{i_{d}}(x_{d}), i_{q} = 1, ..., n, q = 1..d,$$

 $\operatorname{supp}(\varphi_{i}) \in [x_{i-1}, x_{i+1}].$

•
$$\mathbf{v}_{\mathbf{i}} \approx \mathbf{v}_{r,\mathbf{i}} = \sum_{k=1}^{r_{\mathbf{v}}} \mathbf{v}_{k,i_1}^{(1)} \cdots \mathbf{v}_{k,i_d}^{(d)}, ||\mathbf{v} - \mathbf{v}_r|| \le \varepsilon_{\mathbf{v}}$$

•
$$\frac{1}{a_{\mathbf{i}}} \approx \frac{1}{a_{r,\mathbf{i}}} = \sum_{l=1}^{r_{1/a}} \frac{1}{a_{l,i_d}^{(1)}} \cdots \frac{1}{a_{l,i_1}^{(d)}}, \ ||\frac{1}{a} - \frac{1}{a_r}|| \le \varepsilon_a$$

э

Requirements

Suppose the following conditions:

• We have
$$(a\nabla u_h, \nabla \phi_j) = (\nabla v_h, \nabla \phi_j).$$

•
$$\phi_{\mathbf{i}}(\mathbf{x}) = \varphi_{i_1}(x_1) \cdots \varphi_{i_d}(x_d), \ i_q = 1, ..., n, \ q = 1..d,$$

 $\operatorname{supp}(\varphi_i) \in [x_{i-1}, x_{i+1}].$

•
$$\mathbf{v}_{\mathbf{i}} \approx \mathbf{v}_{r,\mathbf{i}} = \sum_{k=1}^{r_{\mathbf{v}}} \mathbf{v}_{k,i_1}^{(1)} \cdots \mathbf{v}_{k,i_d}^{(d)}, ||\mathbf{v} - \mathbf{v}_r|| \le \varepsilon_{\mathbf{v}}$$

•
$$\frac{1}{a_{\mathbf{i}}} \approx \frac{1}{a_{r,\mathbf{i}}} = \sum_{l=1}^{r_{1/a}} \frac{1}{a_{l,i_d}^{(1)}} \cdots \frac{1}{a_{l,i_1}^{(d)}}, \ ||\frac{1}{a} - \frac{1}{a_r}|| \le \varepsilon_a$$

•
$$a_{l,i}^{(q)} > 0$$
, $q = 1, ..., d$, $l = 1, ..., r_{1/a}$, $i = 1, ..., n$

8/28

Image: Image:

∃ → < ∃</p>

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

Result

Then we get:

•
$$u_{\mathbf{i}} \approx u_{r,\mathbf{i}} = \sum_{k=1}^{r_u} u_{k,i_1}^{(1)} \cdots u_{k,i_d}^{(d)}, ||u - u_r|| \le \varepsilon_u.$$

Introduction Model problem Tensor structures in diffusion problem Black-box (discrete) preconditioner Numerical results LS-based (functional) preconditione

Result

Then we get:

•
$$u_{\mathbf{i}} \approx u_{r,\mathbf{i}} = \sum_{k=1}^{r_u} u_{k,i_1}^{(1)} \cdots u_{k,i_d}^{(d)}, ||u - u_r|| \le \varepsilon_u.$$

• $\varepsilon_u = O(\varepsilon_v) + O(\varepsilon_a) + O(h^{\alpha}), h = 1/(n+1), \alpha = 1,$
• $r_u = r_{1/a}r_v.$

2.

æ

Introduction Model problem Tensor structures in diffusion problem Black-box (dis Numerical results LS-based (fund

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

Result

Then we get:

•
$$u_{\mathbf{i}} \approx u_{r,\mathbf{i}} = \sum_{k=1}^{r_u} u_{k,i_1}^{(1)} \cdots u_{k,i_d}^{(d)}, ||u - u_r|| \leq \varepsilon_u.$$

•
$$\varepsilon_u = O(\varepsilon_v) + O(\varepsilon_a) + O(h^{\alpha}), \ h = 1/(n+1), \ \alpha = 1, 2.$$

•
$$r_u = r_{1/a} r_v$$
.

• Factors $u^{(q)}$ can be computed independently from the systems with tridiagonal matrices:

$$a_{i-1} u_{i-1} + \frac{a_{i-1} + a_i}{2} F_1(v_r) u_i + a_i u_{i+1} = \frac{1}{a_i} F_0(v_r)$$

Black-box preconditioner

Left preconditioning

- We are to solve $Ax = f \leftarrow hard$.
- Apply a non singular matrix B: BAx = Bf.
- Solve (*BA*)*x* = (*Bf*).

Black-box MatVec approach

- Iterative solvers exploit just Ax operation.
- Obtaining *BA* and (*BA*)x can be difficult.
- One may apply black-box procedure for $Ax \rightarrow y$ and $By \rightarrow z$ on each iteration (faster).

Black-box preconditioner

Application to diffusion problem

- Suppose Au = f diffusion problem with separability properties.
- We have an algorithm which gives $\tilde{u} \approx u = A^{-1}f$:
 - Compute $v = \Delta^{-1} f$ (using FFT, quadratures fast).
 - Apply sweep-based algorithm: $\tilde{u} = S[1/a](v)$.
- Now we have $By \to z$ operation: $z = S[1/a](\Delta^{-1}y)$.
- FFT, quadrature solver, sweep solver fast methods, complexity O(n), O(n log n).

As A is sparse, we have complexity of one iteration of O(n), or $O(n \log n)$. Introduction Tensor structures in diffusion problem Numerical results Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

Numerical results

• We test complexity S[1/a](v) on v in canonical format with rank r_v , rank $(1/a) = r_{1/a}$, grid size n.

Table: CPU time versus n, $r_v = 59$, $r_{1/a} = 1$, d = 2.

n	CPU Time, sec		
32	0.069945		
64	0.139432		
128	0.275668		
256	0.515547		
512	1.005040		
1024	1.987609		

Numerical results

• We test complexity S[1/a](v) on v in canonical format with rank r_v , rank $(1/a) = r_{1/a}$, grid size n.

Table: CPU time versus $r_u = r_{1/a}r_v$, d = 2, n = 256

r _u	CPU Time, sec
8	0.081331
16	0.147973
32	0.283700
64	0.562467

Image: A matrix

Introduction Tensor structures in diffusion problem Numerical results Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

Numerical results

• We test complexity S[1/a](v) on v in canonical format with rank r_v , rank $(1/a) = r_{1/a}$, grid size n.

Table: CPU time versus d, $r_u = 16$, n = 256

d	CPU Time, sec
2	0.147973
4	0.522492
8	3.120825
16	23.232763

The complexity is of $O(d^3)$ (due to $F_1(v_r)$, $F_0(v_r)$). Application on full vector $N = n^d$ is of O(N). Introduction Model problem Tensor structures in diffusion problem Black-box (discrete) preconditioner Numerical results LS-based (functional) preconditioner

Gradient equation

- Recall $(a\nabla u, \nabla \phi) = (\nabla v, \nabla \phi) \Rightarrow (a\nabla u \nabla v, \nabla \phi) = 0,$ $\phi \in H^1.$
- Require $\nabla u = \frac{1}{a} \nabla v$ in the least squares sence:

$$||\nabla u - \frac{1}{a} \nabla v||^2 \rightarrow \min.$$

• Then
$$\Delta u - \nabla \frac{1}{a} \nabla v = 0.$$

• If $v = \Delta^{-1} f$, then $u = \Delta^{-1} (\nabla \frac{1}{a} \nabla) \Delta^{-1} f$.

Introduction Model problem Tensor structures in diffusion problem Numerical results LS-based (functional) preconditioner

Gradient equation

• Suppose $\Gamma[a]u = f$ is a diffusion problem with coefficient *a*, $\Gamma[a]u = \nabla(a\nabla u)$.

• Then
$$\Gamma[1/a] = \nabla(\frac{1}{a}\nabla).$$

• We have the following preconditioner: $\Delta^{-1}\Gamma[1/a]\Delta^{-1}$

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

 $\Delta^{-1}\Gamma[1/a]\Delta^{-1}\approx\Gamma[a]^{-1}?$

- Hypothesis: $\Delta^{-1}\Gamma[1/a]\Delta^{-1}\Gamma[a] = I + R$.
- In 1D: rank R = 1 (in functional view: dim R = 1) (proved).
- In higher dimension: R has low-rank approximation (in functional view: R is a compact operator) (hypothesis).

イロト イポト イヨト イヨト

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

LS functional vs Black-box discrete

LS

- (+) Simple explicit operator form.
- (+) Symmetric matrix.
- $\bullet~(\pm)$ Convergence depends on jumping of the coefficient.
- (-) Requires 2 Laplace inversions (4(3) FFTs).
- (-) $||\Gamma[a]^{-1} \Delta^{-1}\Gamma[1/a]\Delta^{-1}|| = O(1).$
- (-) In tensor form, has the rank $rank(1/a) rank(\Delta^{-1})^2$.

Model problem Black-box (discrete) preconditioner LS-based (functional) preconditioner

LS functional vs Black-box discrete

Black-box

- (+) Requires 1 Laplace inversion + $d \cdot \text{rank}$ sweeps.
- (+) Intrinsic tensor structure with ranks $rank(1/a) rank(\Delta^{-1})$.

• (+)
$$||\Gamma[a]^{-1} - S(\Delta^{-1})|| = O(h^{\alpha}).$$

- (±) Convergence depends on rank of 1/a.
- (-) Non-symmetric matrix.
- (-) Requires positive tensor approximation for 1/a.
- (-) Complicated formulation.

 Introduction
 2D Dirichlet problem, f=1

 Tensor structures in diffusion problem
 3D and Neumann problems

 Numerical results
 Conclusions

Common properties

- We are solving diffusion problem via GMRES with one of mentioned preconditioners.
- Initial guess is taken as zero in all cases.
- For integration in Galerkin matrix assembly, the rectangle quadrature formula is used.
- No restarts are made in GMRES.
- For both preconditioners, the low-rank positive diffusion is used.

Dependence on *n*

Smooth coefficient:
$$1/a = (x + 1) \cdot \mathbf{e}^y + 2\cos(x + y)$$

Table: Number of iterations to $||Au - f||/||f|| < 10^{-8}$, and

n	Black-box	time, s	LS	time,s
32	5	0.0024	3	0.002261
64	5	0.0079	3	0.005482
128	5	0.0293	3	0.02683
256	5	0.1065	3	0.093763
512	5	0.5008	3	0.513589

CPU time of one iteration.

< 口 > < 同

 Introduction 2D Dirichlet problem, f=1 3D and Neumann problem Numerical results Conclusions

Dependence on *n*

Smooth coefficient:
$$1/a = (x + 1) \cdot \mathbf{e}^y + 2\cos(x + y)$$

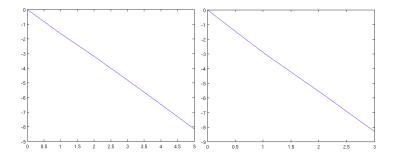


Figure: Convergence history for Black-box (left) and LS (right):

 $\log \frac{||Au-f||}{||f||}$ vs number of iteration.

Dependence on *n*

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

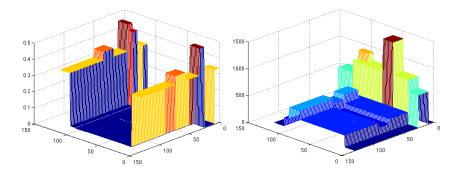


Figure: Diffusion coefficient a (left) and 1/a (right)

Dependence on *n*

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

Table: Number of iterations to $||Au - f||/||f|| < 10^{-8}$, and

n	Black-box	time, s	LS	time, s
32	17	0.0022	45	0.002394
64	18	0.0063	51	0.005692
128	18	0.0259	53	0.023622
256	18	0.0999	54	0.098719
512	18	0.5275	55	0.512126

CPU time of one iteration.

Dependence on *n*

Jumping coefficient: 1/a of rank 3, values from 2 to 1400.

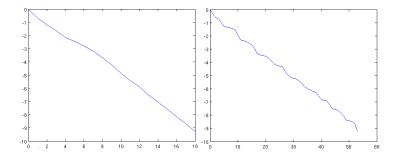


Figure: Convergence history for Black-box (left) and LS (right):

 $\log \frac{||Au-f||}{||f||}$ vs number of iteration.

Introduction 2D Dirichlet problem, f=1 3D and Neumann problems Numerical results Conclusions

Dependence on jumps and ranks

Rank-2 checkerboard: $1/a = \operatorname{chk}(x) \cdot 1 + 1 \cdot \operatorname{chk}(y)$, where $\operatorname{chk}(x) = \begin{cases} 1, [x \cdot 16] \text{ is odd}, \\ \alpha, [x \cdot 16] \text{ is even}. \end{cases}$

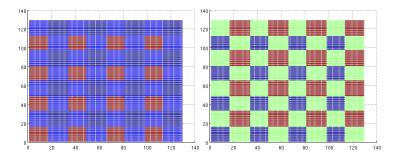


Figure: Diffusion coefficient a (left) and 1/a (right)

Introduction 2D Dirichlet problem, f=1 3D and Neumann problem Numerical results Conclusions

Dependence on jumps and ranks

Rank-2 checkerboard: dependency on α , n = 128.

Table: Number of iterations to $||Au - f||/||f|| < 10^{-8}$.

α	Black-box	LS
0.01	14	14
0.1	10	8
10	11	9
100	19	17
1000	23	24

CPU time of one iteration: Black-box - 0.0207 s, LS - 0.024795 s.

2D Dirichlet problem, f=1 3D and Neumann problems Conclusions

Dependence on jumps and ranks

Rank-2 checkerboard: $\alpha = 1000$.

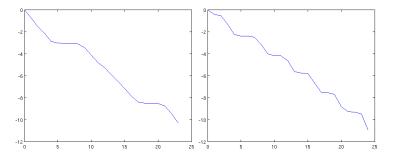


Figure: Convergence history for Black-box (left) and LS (right): $\log \frac{||Au-f||}{||f||} \text{ vs number of iteration.}$

2D Dirichlet problem, f=1 3D and Neumann problems Conclusions

Dependence on jumps and ranks

3 test functions:

- $1/a_1 = if1(x) \cdot if2(y)$ (rank = 1),
- $1/a_2 = if1(x) \cdot if2(y) + (x+1) \cdot e^y$ (rank = 2),
- $1/a_3 = if1(x) \cdot if2(y) + (x+1) \cdot e^y + chk(x) \cdot 1 + 1 \cdot chk(y)$ (rank = 4),

where

$$\mathtt{if1}(x) = \left\{ egin{array}{ccc} 0.1, & x \in [0, 0.25], \\ 1, & x \in (0.25, 1]; \end{array}
ight. \mathtt{if2}(x) = \left\{ egin{array}{ccc} 1, & x \in [0, 0.75), \\ 7, & x \in [0.75, 1], \end{array}
ight.$$

chk(x) parameter $\alpha = 10$.

2D Dirichlet problem, f=1 3D and Neumann problems Conclusions

Dependence on jumps and ranks

3 test functions:

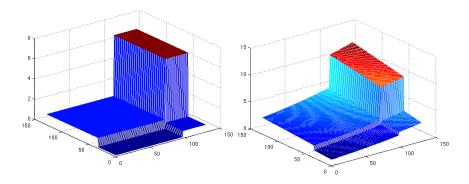


Figure: Reciprocal coefficients $1/a_1$ (left) and $1/a_2$ (right)

Introduction 2D Dirichlet problem, f=1 3D and Neumann problem Numerical results Conclusions

Dependence on jumps and ranks

3 test functions: dependency on rank, n = 128.

Table: Number of iterations to $||Au - f||/||f|| < 10^{-8}$, and CPU time of one iteration.

coefficient	Black-box	time, s	LS	time, s
$a_1 (rank = 1, \frac{max}{min} = 70)$	6	0.017	12	0.023088
$a_2 (rank = 2, \frac{max}{min} = 11.3)$	8	0.022	6	0.024139
$a_3 (rank = 4, \frac{max}{min} = 10.4)$	13	0.029	8	0.022821

2D Dirichlet problem, f=1 3D and Neumann problems Conclusions

Dependence on jumps and ranks

3 test functions: $a = a_1$.



Figure: Convergence history for Black-box (left) and LS (right): $\log \frac{||Au-f||}{||f||} \text{ vs number of iteration.}$ Introduction 2D Dirichlet problem, f=1 3D and Neumann problems Numerical results Conclusions

3D Dirichlet sample problems

$$f = 1. \ n = 64.$$
• $1/a_1 = if1(x) \cdot if2(y) \cdot if3(z),$
 $if3(x) = \begin{cases} 10, x \in [0.125, 0.25], \\ 1, otherwise; \end{cases}$
• $1/a_2 = if1(x) \cdot if2(y) \cdot if3(z) + (x+1) \cdot e^y \cdot \frac{1}{1+10z};$
• $1/a_3 = chk(x) + chk(y) + chk(z), \alpha = 10^{-3}.$

æ

(日) (同) (三) (

Introduction 2D Dirichlet problem, f=1 3D and Neumann problems Numerical results Conclusions

3D Dirichlet sample problems

f = 1. n = 64.

Table: Number of iterations to $||Au - f||/||f|| < 10^{-8}$, and

CPU time of one iteration.

coefficient	Black-box	time, s	LS	time, s
a ₁	12	0.5478	24	0.758098
a ₂	12	0.7107	17	0.746054
a ₃	21	0.8062	23	0.744929

2D Dirichlet problem, f=1 3D and Neumann problems Conclusions

3D Neumann problems

$$f = \cos(\pi x) \cos(\pi y) \cos(\pi z). \quad n = 64.$$

• $1/a_1 = \text{if1}(x) \cdot \text{if2}(y) \cdot \text{if3}(z),$

$$\mathtt{if3}(x) = \left\{ egin{array}{cc} 10, & x \in [0.125, 0.25], \ 1, & otherwise; \end{array}
ight.$$

•
$$1/a_2 = if1(x) \cdot if2(y) \cdot if3(z) + (x+1) \cdot e^y \cdot \frac{1}{1+10z};$$

• $1/a_3 = chk(x) + chk(y) + chk(z), \ \alpha = 10^{-3}.$

æ

・ロト ・部ト ・ヨト ・ヨト

Introduction 2D Dirichlet problem, f=1 Tensor structures in diffusion problem Numerical results Conclusions

3D Neumann problems

$$f = \cos(\pi x)\cos(\pi y)\cos(\pi z). \ n = 64.$$

Table: Number of iterations to $||Au - f||/||f|| < 10^{-8}$, and

CPU time of one iteration.

coefficient	Black-box	time, s	LS	time, s
a ₁	13	0.6168	27	0.841716
a ₂	25	0.7268	30	0.830226
a ₃	15	0.8690	18	0.835752

Sample problem

Sample problem from the Society of Petroleum Engineers benchmark. n = 512, max(a) = 1000, min(a) = 1.

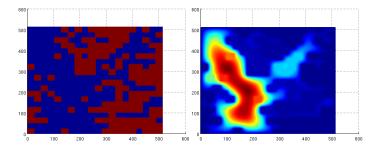


Figure: Diffusion coefficient a (left) and solution u (right)

LS preconditioner: 29 iterations, time of one iteration 0.526171 s.

	Introduction	2D Dirichlet problem, f=1
Tensor structures in dif	fusion problem	3D and Neumann problems
Nu	imerical results	Conclusions

- Proposed and compared two preconditioners for diffusion problem.
- Preconditioners can be applied in canonical tensor format, or full format, with complexity O(n) and O(N), correspondingly.
- For each coefficient can be chosen an optimal algorithm.

Future plans:

- Application to other PDEs (convection/reaction, etc; arbitrary domains).
- Further improvements of algorithms.

Introduction	2D Dirichlet problem, f=1
Tensor structures in diffusion problem	3D and Neumann problems
Numerical results	Conclusions

Thank you for your attention.