## Minimal Subspaces

## Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften


Inselstr. 22-26, D-04103 Leipzig, Germany wh@mis.mpg.de
http://www.mis.mpg.de/scicomp/hackbusch_e.html

$$
\text { Leipzig, May 4, } 2010
$$

## 1 Formats Characterised by Subspaces

1) Tensor Subspace Representation (Tucker Format)

For $\mathbf{v} \in \mathbf{V}=V^{(1)} \otimes \ldots \otimes V^{(d)}$ there are subspaces $U^{(j)} \subset V^{(j)}$ of (possibly smaller) dimension $\operatorname{dim} U^{(j)}=r_{j}$ with

$$
\mathbf{u} \in \mathbf{U}=U^{(1)} \otimes U^{(2)} \otimes \ldots \otimes U^{(d)}
$$

Numerical realisation: $U^{(j)}=\operatorname{span}\left\{b_{1}^{(j)}, \ldots, b_{r_{j}}^{(j)}\right\}$ leads to

$$
\mathbf{u}=\sum_{1 \leq \ell_{1} \leq r_{1}} \ldots \sum_{1 \leq \ell_{d} \leq r_{d}} a_{\ell_{1}, \ldots, \ell_{d}} b_{\ell_{1}}^{(1)} \otimes \ldots \otimes b_{\ell_{d}}^{(d)}
$$

Format: $\mathcal{T}_{\mathbf{r}}:=\left\{\mathbf{u} \in U^{(1)} \otimes \ldots \otimes U^{(d)}: \operatorname{dim} U^{(j)}=r_{j}\right\}$
2) Hierarchical Tensor Format

Explanation for the example $d=4, \mathbf{V}=V^{(1)} \otimes V^{(2)} \otimes V^{(3)} \otimes V^{(4)}$

$$
\begin{aligned}
& \begin{array}{lccc}
\mathbf{V}= & V^{(1)} \otimes V^{(2)} & \otimes & V^{(3)} \otimes V^{(4)} \\
\cup & \cup \cup & & \cup \cup
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \cup \quad \cup \\
& \otimes \quad U^{(3+4)} \\
& \operatorname{dim} U^{(\alpha)}=r_{\alpha} \text { for } \alpha=(1+2),(3+4) \\
& \operatorname{dim} U^{(\alpha)}=r_{\alpha} \text { for } \alpha=(1-4) \\
& \mathbf{v} \in U^{(1-4)}
\end{aligned}
$$

Format: $\mathcal{H}_{\mathrm{r}}$
3) TT Format

$$
\begin{aligned}
& \underbrace{\underbrace{\underbrace{}_{1} \otimes U_{\{1\}}}_{\supset U_{\{1,2,3\}}} \otimes V_{2}}_{\supset U_{\{1,2,3,4\}}} \otimes V_{3} \otimes V_{4} \otimes V_{5} \otimes \ldots \\
& \rho_{j}:=\operatorname{dim} U_{\{1, \ldots, j\}}
\end{aligned}
$$

Format: $\mathbb{T}_{\rho}$

## Questions:

A) Given $\mathbf{v} \in a \underset{j=1}{\otimes} V_{j}$, what are the subspaces $U_{j} \subset V_{j}$ with $\mathbf{v} \in a \underset{j=1}{\otimes} U_{j}$ ? What are the minimal subspaces $\rightarrow U_{j, \text { min }}(\mathbf{v})$.

How does $U_{j, \min }(\mathbf{v})$ depend on $\mathbf{v}$ ? In particular, $\operatorname{dim} U_{j, \min }(\mathbf{v})$ ?
B) Best approximation problem: Given $\mathbf{v} \in \stackrel{\bigotimes_{j=1}}{{ }_{j}} V_{j}$ and some norm $\|\cdot\|$, is there some $\mathbf{u} \in \mathcal{T}_{\mathbf{r}}$ (or $\in \mathcal{H}_{\mathbf{r}}$ or $\in \mathbb{T}_{\mathbf{r}}$ ) such that

$$
\|\mathbf{v}-\mathbf{u}\|=\inf _{\mathbf{w} \in \mathcal{T}_{\mathbf{r}}}\|\mathbf{v}-\mathbf{w}\| ?
$$

Case of $\operatorname{dim} V_{j}=\infty$ included!

## 2 Minimal Subspaces of a Tensor

## General Remarks

REMARK 1.1. For $\mathbf{v} \in{ }_{a} \otimes_{j=1}^{d} V_{j}$ there are always finite dimensional subspaces $U_{j} \subset V_{j}$ satisfying $\mathbf{v} \in a \stackrel{\bigotimes_{j=1}^{\otimes}}{Q_{j}}$.

PROOF: By definition of the algebraic tensor space, $\mathbf{v} \in a \otimes_{j=1}^{d} V_{j}$ is a finite linear combination

$$
\mathbf{v}=\sum_{\nu=1}^{n} \bigotimes_{j=1}^{d} v_{\nu}^{(j)}
$$

for some $n \in \mathbb{N}_{0}$ and $v_{\nu}^{(j)} \in V_{j}$. Define

$$
U_{j}:=\operatorname{span}\left\{v_{\nu}^{(j)}: 1 \leq \nu \leq n\right\} \quad \text { for } 1 \leq j \leq d
$$

Then $\mathbf{v} \in \mathbf{U}:={ }_{a} \otimes_{j=1}^{d} U_{j}$ with $\operatorname{dim}\left(U_{j}\right) \leq n$.

The next, well-known result is formulated for $d=2$.

LEMMA 1.2. For any tensor $\mathbf{x} \in V \otimes_{a} W$ there is an $r \in \mathbb{N}_{0}$ and a representation

$$
\mathbf{x}=\sum_{i=1}^{r} v_{i} \otimes w_{i}
$$

with linearly independent vectors $\left\{v_{i}: 1 \leq i \leq r\right\} \subset V$ and $\left\{w_{i}: 1 \leq i \leq r\right\} \subset W$.

PROOF. Take any representation $\mathbf{x}=\sum_{i=1}^{n} v_{i} \otimes w_{i}$. If, e.g., the $\left\{v_{i}: 1 \leq i \leq n\right\}$ are not linearly independent, one $v_{i}$ can be expressed by the others. Without loss of generality assume $v_{n}=\sum_{i=1}^{n-1} \alpha_{i} v_{i}$. Then

$$
v_{n} \otimes w_{n}=\left(\sum_{i=1}^{n-1} \alpha_{i} v_{i}\right) \otimes w_{n}=\sum_{i=1}^{n-1} v_{i} \otimes\left(\alpha_{i} w_{n}\right)
$$

shows that x possesses a representation with only $n-1$ terms:

$$
\mathbf{x}=\left(\sum_{i=1}^{n-1} v_{i} \otimes w_{i}\right)+v_{n} \otimes w_{n}=\sum_{i=1}^{n-1} v_{i} \otimes w_{i}^{\prime} \quad \text { with } \quad w_{i}^{\prime}:=w_{i}+\alpha_{i} w_{n}
$$

Since each reduction step decreases the number of terms by one, this process terminates, i.e., we obtain a representation with linearly independent $v_{i}$ and $w_{i}$.

DEFINITION 1.3. For a tensor $\mathbf{v} \in V_{1} \otimes_{a} V_{2}$, the minimal subspaces are denoted by $U_{1, \min }(\mathrm{v})$ and $U_{2, \min }(\mathrm{v})$ defined by the properties

$$
\begin{aligned}
& \mathbf{v} \in U_{1, \min }(\mathbf{v}) \otimes_{a} U_{1, \min }(\mathbf{v}) \\
& \mathbf{v} \in U_{1} \otimes_{a} U_{2} \Rightarrow U_{1, \min }(\mathbf{v}) \subset U_{1}, U_{1, \min }(\mathbf{v}) \subset U_{2}
\end{aligned}
$$

To ensure the existence of minimal subspaces $U_{1}, U_{2}$ with $\mathbf{v} \in U_{1} \otimes U_{2}$, we need a lattice structure, which is subject of the next lemma.

Then:
Consider the family $\left\{\left(U_{1, \alpha}, U_{2, \alpha}\right): \alpha \in \mathcal{F}\right\}$ of all subspaces such that $\mathbf{v} \in U_{1, \alpha} \otimes_{a} U_{2, \alpha}$ for all $\alpha \in \mathcal{F}$ and set

$$
U_{j, \min }(\mathrm{v}):=\bigcap_{\alpha \in \mathcal{F}} U_{j, \alpha}
$$

LEMMA 1.4. $\mathbf{v} \in X_{1} \otimes_{a} X_{2}$ and $\mathbf{v} \in Y_{1} \otimes_{a} Y_{2} \Rightarrow \mathbf{v} \in\left(X_{1} \cap Y_{1}\right) \otimes_{a}\left(X_{2} \cap Y_{2}\right)$.

PROOF. By assumption, $\mathbf{v}$ has the two representations

$$
\mathbf{v}=\sum_{\nu=1}^{n_{x}} x_{\nu}^{(1)} \otimes x_{\nu}^{(2)}=\sum_{\nu=1}^{n_{y}} y_{\nu}^{(1)} \otimes y_{\nu}^{(2)} \quad \text { with } x_{\nu}^{(i)} \in X_{i}, y_{\nu}^{(i)} \in Y_{i}
$$

Thanks to Lemma 1.2, $\left\{x_{\nu}^{(1)}\right\},\left\{x_{\nu}^{(2)}\right\},\left\{y_{\nu}^{(1)}\right\},\left\{y_{\nu}^{(2)}\right\}$ may be assumed to be linearly independent.
Dual basis $\xi_{\mu}^{(2)} \in X_{2}$ of $\left\{x_{\nu}^{(2)}\right\}: \xi_{\mu}^{(2)}\left(x_{\nu}^{(2)}\right)=\delta_{\nu \mu}$.
Application of $i d \otimes \xi_{\mu}^{(2)}$ to the first representation: $\left(i d \otimes \xi_{\mu}^{(2)}\right)(\mathrm{v})=x_{\mu}^{(1)}$, application to second representation: $\sum_{\nu=1}^{n_{y}} \xi_{\mu}^{(2)}\left(y_{\nu}^{(2)}\right) y_{\nu}^{(1)}$
$\Rightarrow x_{\mu}^{(1)}=\sum_{\nu=1}^{n_{y}} \xi_{\mu}^{(2)}\left(y_{\nu}^{(2)}\right) y_{\nu}^{(1)} \Rightarrow x_{\nu}^{(1)} \in Y_{1}$.
Dual basis $\xi_{\mu}^{(1)}$ of $\left\{x_{\nu}^{(1)}\right\}$ and application of $\xi_{\mu}^{(1)} \otimes i d$ to $\mathbf{v}$ proves $x_{\nu}^{(2)} \in Y_{2}$.
Hence $x_{\nu}^{(i)} \in X_{i} \cap Y_{i}$ is shown, i.e., $\mathbf{v} \in\left(X_{1} \cap Y_{1}\right) \otimes_{a}\left(X_{2} \cap Y_{2}\right)$.

LEMMA 1.5. Assume $\mathbf{v}=\sum_{i=1}^{r} v_{i} \otimes w_{i}$ with linearly independent $\left\{v_{i}: 1 \leq i \leq r\right\}$ and $\left\{w_{i}: 1 \leq i \leq r\right\}$. Then they span the minimal spaces:
$U_{1, \min }(\mathbf{v})=\operatorname{span}\left\{v_{\nu}: 1 \leq \nu \leq r\right\} \quad$ and $\quad U_{2, \min }(\mathbf{v})=\operatorname{span}\left\{w_{\nu}: 1 \leq \nu \leq r\right\}$. In particular, $\operatorname{dim}\left(U_{1, \min }(\mathbf{v})\right)=\operatorname{dim}\left(U_{2, \min }(\mathbf{v})\right)=r$.

PROPOSITION 1.6. Let $\mathbf{v} \in V_{1} \otimes_{a} V_{2}$. The minimal subspaces $U_{1, \min }(\mathrm{v})$ and $U_{2 \text {, min }}(\mathrm{v})$ are characterised by

$$
\begin{aligned}
& U_{1, \min }(\mathrm{v})=\left\{(i d \otimes \lambda)(\mathrm{v}): \lambda \in V_{2}^{\prime}\right\} \\
& U_{2, \min }(\mathrm{v})=\left\{(\lambda \otimes i d)(\mathrm{v}): \lambda \in V_{1}^{\prime}\right\}
\end{aligned}
$$

$(i d \otimes \lambda)\left(\sum_{i=1}^{r} v_{i} \otimes w_{i}\right)=\sum_{i=1}^{r}(i d \otimes \lambda)\left(v_{i} \otimes w_{i}\right)=\sum_{i=1}^{r} \lambda\left(w_{i}\right) \cdot v_{i}$.
Matrix interpretation ( $\mathbf{v}=M$ ):

$$
U_{1, \min }(\mathbf{v})=\operatorname{range}(M), \quad U_{2, \min }(\mathbf{v})=\operatorname{range}\left(M^{\top}\right)
$$

COROLLARY 1.7 (a) Once $U_{1, \min }(v)$ and $U_{2, \min }(v)$ are given, one may select any basis $\left\{v_{i}: 1 \leq i \leq n\right\}$ of $U_{1, \min }(\mathrm{v})$ and finds a representation $\mathbf{v}=\sum_{i=1}^{r} v_{i} \otimes w_{i}$ with some basis $\left\{w_{i}\right\}$ of $U_{2, \min }(\mathbf{v})$.
Vice versa, one may select a basis $\left\{w_{i}: 1 \leq i \leq n\right\}$ of $U_{2, \min }(\mathbf{v})$, and obtains $\mathbf{v}=\sum_{i=1}^{r} v_{i} \otimes w_{i}$ with some other basis of $U_{1, \min }(\mathbf{v})$.
(b) If we fix a basis $\left\{w_{\nu}: 1 \leq \nu \leq n\right\}$ of a subspace $U_{2}$, there are mappings $\left\{\Psi_{\nu}: 1 \leq \nu \leq n\right\} \subset L\left(V_{1} \otimes U_{2}, V_{1}\right)$ such that

$$
\mathbf{w}=\sum_{\nu=1}^{n} \Psi_{\nu}(\mathbf{w}) \otimes w_{\nu} \quad \text { for all } \mathbf{w} \in V_{1} \otimes U_{2}
$$

PROOF of (b). Let $\mathbf{w}=\sum_{\nu=1}^{n} v_{\nu} \otimes w_{\nu}$.
Choose a dual basis $\left\{\psi_{\nu}\right\}$ to $w_{\nu}$. i.e., $\psi_{\nu}\left(w_{\mu}\right)=\delta_{\nu \mu}$.
Set $\Psi_{\nu}:=i d \otimes \psi_{\nu} \Rightarrow$

$$
\Psi_{\nu}(\mathbf{w})=\sum_{i=1}^{n}\left(i d \otimes \psi_{\nu}\right)\left(v_{i} \otimes w_{i}\right)=\sum_{i=1}^{n} v_{i} \otimes \psi_{\nu}\left(w_{i}\right)=v_{\nu}
$$

## Definition in the General Case

Now $d \geq$ 3. By Remark 1.1 we may assume $\mathbf{v} \in \mathbf{U}:=\otimes_{j=1}^{d} U_{j}$ with finite dimensional subspaces $U_{j} \subset V_{j}$. The lattice structure from Lemma 1.4 generalises to higher order:

LEMMA 1.8. $\left(a \otimes_{j=1}^{d} X_{j}\right) \cap\left(a \otimes_{j=1}^{d} Y_{j}\right)={ }_{a} \otimes_{j=1}^{d}\left(X_{j} \cap Y_{j}\right)$.
PROOF. Start of the induction at $d=2$ by Lemma 1.4. Assume assertion for $d-1$ and write $a \otimes_{j=1}^{d} X_{j}$ as $X_{1} \otimes X_{[1]}$ with $X_{[1]}:={ }_{a} \otimes_{j=2}^{d} X_{j}$. Similarly, use $a \otimes_{j=1}^{d} Y_{j}=Y_{1} \otimes Y_{[1]}$. Lemma 1.4 states that $\mathbf{v} \in\left(X_{1} \cap Y_{1}\right) \otimes\left(X_{[1]} \cap Y_{[1]}\right)$. By induction hypothesis, $X_{[1]} \cap Y_{[1]}=a \otimes_{j=2}^{d}\left(X_{j} \cap Y_{j}\right)$ is valid proving the assertion.

The minimal subspaces $U_{j, \min }(\mathbf{v})$ are given by the intersection of all $U_{j}$ satisfying $\mathbf{v} \in{ }_{a} \otimes_{j=1}^{d} U_{j}$.

For $\alpha=\underset{k \neq j}{\otimes} \alpha_{k} \in a \underset{\substack{ \\k \neq j}}{\otimes} V_{k}^{\prime}$ define $\alpha: \mathbf{V} \rightarrow V_{j}$ by

$$
\begin{aligned}
\alpha(\mathbf{v}):= & \left(\alpha_{1} \otimes \ldots \otimes \alpha_{j-1} \otimes i d \otimes \alpha_{j+1} \otimes \ldots \otimes \alpha_{d}\right)(\mathbf{v}), \\
& \alpha\left(\bigotimes_{k=1}^{d} v^{(k)}\right):=\left(\prod_{k \neq j} \alpha_{k}\left(v^{(k)}\right)\right) \cdot v^{(j)} .
\end{aligned}
$$

LEMMA 1.9. Let $\mathbf{v} \in \mathbf{V}={ }_{a} \bigotimes_{j=1}^{d} V_{j}$. The two spaces

$$
\begin{aligned}
U_{j}^{I}(\mathbf{v}) & :=\left\{\alpha(\mathbf{v}): \alpha \in a \bigotimes_{k \neq j} V_{k}^{\prime}\right\}, \\
U_{j}^{I I}(\mathbf{v}) & :=\left\{\alpha(\mathbf{v}): \alpha \in\left(a \bigotimes_{k \neq j} V_{k}\right)^{\prime}\right\}
\end{aligned}
$$

coincide.

PROOF. Mappings $\alpha$ are applied to $\mathbf{v} \in \mathbf{U}:=\bigotimes_{j=1}^{d} U_{j}$, i.e., one may replace $\alpha \in{ }_{a} \otimes_{k \neq j} V_{k}^{\prime}$ by $\alpha \in{ }_{a} \otimes_{k \neq j} U_{k}^{\prime}$ and $\alpha \in\left(a \otimes_{k \neq j} V_{k}\right)^{\prime}$ by $\alpha \in\left(a \otimes_{k \neq j} U_{k}\right)^{\prime}$. Since $\operatorname{dim}\left(U_{k}\right)<\infty, a \otimes_{k \neq j} U_{k}^{\prime}=\left(a \otimes_{k \neq j} U_{k}\right)^{\prime}$.

Matricisation: $\mathbf{v} \in V_{j} \otimes V_{[j]}$ with $V_{[j]}:={ }_{a} \otimes_{k \neq j} V_{k}$.
$\Rightarrow \mathbf{v} \in U_{j, \min }(\mathbf{v}) \otimes V_{[j]}$ with $U_{j, \min }=\left\{(i d \otimes \lambda)(\mathbf{v}): \lambda \in\left(V_{[j]}\right)^{\prime}\right\}=U_{j}^{I I}(\mathbf{v})$.
THEOREM 1.10. For any $\mathbf{v} \in \mathbf{V}={ }_{a} \bigotimes_{j=1}^{d} V_{j}$ there exist minimal subspaces $U_{j, \min }(\mathrm{v})(1 \leq j \leq d)$. An algebraic characterisation of $U_{j, \min }(\mathrm{v})$ is

$$
\begin{aligned}
& U_{j, \min }(\mathbf{v}) \\
= & \operatorname{span}\left\{\left(\alpha_{1} \otimes \ldots \otimes \alpha_{j-1} \otimes i d \otimes \alpha_{j+1} \otimes \ldots \otimes \alpha_{d}\right)(\mathbf{v}): \alpha_{k} \in V_{k}^{\prime} \text { for } k \neq j\right\}
\end{aligned}
$$

or equivalently

$$
U_{j, \min }(\mathrm{v})=\left\{\alpha(\mathrm{v}): \alpha \in a \bigotimes_{k \neq j} V_{k}^{\prime}\right\}
$$

## 3 Topological Tensor Space

$\left(V_{j},\|\cdot\|_{j}\right)$ are Banach spaces. The tensor space $\mathbf{V}:=\|\cdot\| \otimes_{j=1}^{d} V_{j}$ is now the completion of the algebraic tensor space $a \otimes_{j=1}^{d} V_{j}$ w.r.t. a norm $\|\cdot\|$.
Notations: $V_{j}^{*}$ dual spaces with dual norm $\|\cdot\|_{j}^{*}$.
DEFINITION 2.1. For $\mathbf{v} \in \mathbf{V}={ }_{a} \otimes_{j=1}^{d} V_{j}$ define $\|\cdot\|_{V}$ by

$$
\|\mathbf{v}\|_{\vee}:=\sup \left\{\frac{\left|\left(\varphi^{(1)} \otimes \varphi^{(2)} \otimes \ldots \otimes \varphi^{(d)}\right)(\mathbf{v})\right|}{\prod_{j=1}^{d}\left\|\varphi^{(j)}\right\|_{j}^{*}}: 0 \neq \varphi^{(j)} \in V_{j}^{*}, 1 \leq j \leq d\right\}
$$

(injective norm [Grothdieck 1953]).
THEOREM 2.2. Any norm $\|\cdot\|$ on ${ }_{a} \otimes_{j=1}^{d} V_{j}$, for which

$$
\begin{array}{ll}
\bigotimes_{j=1}^{d}: & V_{1} \times \ldots \times V_{d} \rightarrow{ }_{a} \bigotimes_{j=1}^{d} V_{j} \text { and } \\
\bigotimes_{j=1}^{d}: & V_{1}^{*} \times \ldots \times V_{d}^{*} \rightarrow{ }_{a} \bigotimes_{j=1}^{d} V_{j}^{*}
\end{array}
$$

are continuous, cannot be weaker than $\|\cdot\|_{V}$, i.e.,

$$
\|\cdot\| \gtrsim\|\cdot\|_{V} .
$$

LEMMA 2.3. For fixed $j \in\{1, \ldots, d\}, \varphi=\otimes_{k \neq j} v_{k}^{*} \in{ }_{a} \otimes_{k \neq j} V_{k}^{*}$ maps $\left(a \otimes_{k=1}^{d} V_{k},\|\cdot\|_{\vee}\right)$ into $V_{j}$ via

$$
\varphi\left(\bigotimes_{k=1}^{d} v^{(k)}\right):=\left(\prod_{k \in\{1, \ldots, d\} \backslash\{j\}} v_{k}^{*}\left(v^{(k)}\right)\right) \cdot v^{(j)}
$$

The mapping $\varphi$ is denoted by $\varphi=v_{1}^{*} \otimes \ldots \otimes v_{j-1}^{*} \otimes i d \otimes v_{j+1}^{*} \otimes \ldots \otimes v_{d}^{*}$. Then $\varphi$ is continuous, i.e., $\varphi \in \mathcal{L}\left(\vee \otimes_{k=1}^{d} V_{k}, V_{j}\right)$. Its norm is

$$
\|\varphi\|_{V_{j} \leftarrow \vee} \otimes_{k=1}^{d} V_{k}=\prod_{k \in\{1, \ldots, d\} \backslash\{j\}}\left\|v_{k}^{*}\right\|_{k}^{*}
$$

PROOF. Let $v_{j}^{*} \in V_{j}^{*}$ with $\left\|v_{j}^{*}\right\|_{j}^{*}=1$ and note that the composition $v_{j}^{*} \circ \varphi$ equals $\mathbf{v}^{*}:=\bigotimes_{k=1}^{d} v_{k}^{*}$. Hence,
$\|\varphi(\mathbf{v})\|_{j}=\max _{\left\|v_{j}^{*}\right\|_{j}^{*}=1}\left|v_{j}^{*}(\varphi(\mathbf{v}))\right|=\max _{\left\|v_{j}^{*}\right\|_{j}^{*}=1}\left|\left(v_{j}^{*} \circ \varphi\right)(\mathbf{v})\right|=\max _{\left\|v_{j}^{*}\right\|_{j}^{*}=1}\left|\left(\bigotimes_{k=1}^{d} v_{k}^{*}\right)(\mathbf{v})\right|$
and

$$
\sup _{\|\mathbf{v}\|_{\mathrm{V}}=1}\left|v_{j}^{*}(\varphi(\mathbf{v}))\right|=\sup _{\|\mathbf{v}\|_{\mathrm{V}}=1}\left|\left(\bigotimes_{k=1}^{d} v_{k}^{*}\right)(\mathbf{v})\right|=\left\|\bigotimes_{k=1}^{d} v_{k}^{*}\right\|_{V}^{*}=\prod_{k=1}^{d}\left\|v_{k}^{*}\right\|^{*}=\prod_{k \neq j}\left\|v_{k}^{*}\right\|_{k}^{*}
$$

LEMMA 2.4. For $\mathbf{v} \in \mathbf{V}={ }_{a} \otimes_{j=1}^{d} V_{j}$ define

$$
\begin{aligned}
U_{j}^{I I I}(\mathrm{v}) & :=\left\{\alpha(\mathrm{v}): \alpha \in{ }_{a} \bigotimes_{k \neq j} V_{k}^{*}\right\} \\
U_{j}^{I V}(\mathrm{v}) & :=\left\{\alpha(\mathrm{v}): \alpha \in\left(\|\cdot\| \bigotimes_{k \neq j} V_{k}\right)^{*}\right\} .
\end{aligned}
$$

Then $U_{j}^{I I I}(\mathrm{v})=U_{j}^{I V}(\mathrm{v})=U_{j, \text { min }}(\mathrm{v})$.
PROOF. Hahn-Banach

## Sequences of Minimal Subspaces



The following definition $U_{j, \min }(\mathbf{v})$ can also be applied to $\mathbf{v} \in\|\cdot\| \otimes_{j=1}^{d} V_{j} \backslash a \otimes_{j=1}^{d} V_{j}$ :

$$
\begin{aligned}
& U_{j, \min }(\mathrm{v}) \\
& =\operatorname{closure}\left(\operatorname{span}\left\{\left(\varphi_{1} \otimes \ldots \otimes \varphi_{j-1} \otimes i d \otimes \varphi_{j+1} \otimes \ldots \otimes \varphi_{d}\right)(\mathrm{v}): \varphi_{\nu} \in V_{\nu}^{*} \text { for } \nu \neq j\right\}\right. \\
& =\operatorname{closure}\left\{\varphi(\mathrm{v}): \varphi \in{ }_{a} \bigotimes_{k \neq j} V_{k}^{*}\right\}=\operatorname{closure}\left\{\varphi(\mathrm{v}): \varphi \in\left(\|\cdot\| \bigotimes_{k \neq j} V_{k}\right)^{*}\right\} .
\end{aligned}
$$

By LEMMA 2.3, the involved mappings $\varphi: \mathbf{V} \rightarrow V_{j}$ are continuous.

Note that
$\Delta$ for $\mathrm{v} \in{ }_{a} \otimes_{j=1}^{d} V_{j}$ the subspace $U_{j, \text { min }}(\mathrm{v})$ is defined by the minimality condition. Thm 1.10 shows $U_{j, \min }(\mathbf{v})=\operatorname{span}\left\{\left(\otimes_{k \neq j} \alpha_{k}\right)(\mathbf{v}): \alpha_{k} \in V_{k}^{\prime}\right\}$, which for these $\mathbf{v}$ coincides with the definition above.
$\Delta$ for $\mathbf{v} \in\|\cdot\| \otimes_{j=1}^{d} V_{j} \backslash a \otimes_{j=1}^{d} V_{j}$ the equation above is a definition. Whether $\mathbf{v} \in\|\cdot\| \otimes_{j=1}^{d} U_{j, \min }(\mathbf{v})$ with minimal $U_{j, \min }(\mathbf{v})$ holds, is not yet stated.

A sequence $x_{n} \in X$ is weakly convergent, if $\lim _{n \rightarrow \infty} \varphi\left(x_{n}\right)$ exists for all $\varphi \in X^{*}$. $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to $x \in X$, if $\lim \varphi\left(x_{n}\right)=\varphi(x)$ for all $\varphi \in X^{*}$. Notation: $x_{n} \rightharpoonup x$.

LEMMA 2.5. Assume (norm). Let $\varphi_{[j]} \in a \otimes_{k \neq j} V_{k}^{*}$ and $\mathbf{v}_{n}, \mathbf{v} \in \mathbf{V}$ with $\mathbf{v}_{n} \rightharpoonup \mathbf{v}$. (a) Then $\varphi_{[j]}\left(\mathbf{v}_{n}\right) \rightharpoonup \varphi_{[j]}(\mathbf{v})$ in $V_{j}$.
(b) The estimate

$$
\left\|\varphi_{[j]}\left(\mathbf{v}-\mathbf{v}_{n}\right)\right\|_{V_{j}} \leq C\left\|\mathbf{v}-\mathbf{v}_{n}\right\|
$$

holds for elementary tensors $\varphi_{[j]} \in{ }_{a} \otimes_{k \neq j} V_{k}^{*}$ with $\left\|v_{k}^{*}\right\|^{*}=1$, where $C$ is the norm constant involved in (Norm).

PROOF. 1) Let $\varphi_{[j]}=\otimes_{k \neq j} v_{k}^{*}\left(v_{k}^{*} \in V_{k}^{*}\right)$. To prove $\varphi_{[j]}\left(\mathbf{v}_{n}\right) \rightharpoonup \varphi_{[j]}(\mathbf{v})$ show for all $\varphi_{j} \in V_{j}^{*}$ that $\varphi_{j}\left(\varphi_{[j]}\left(\mathbf{v}_{n}\right)\right) \rightarrow \varphi_{j}\left(\varphi_{[j]}(\mathrm{v})\right)$. The composition $\varphi_{j} \circ \varphi_{[j]}=\otimes_{k=1}^{d} v_{k}^{*}$ belongs to $\vee \otimes_{k=1}^{d} V_{k}^{*}$ and because of (norm) also to $\mathbf{V}^{*}=\left(\|\cdot\| \otimes_{k=1}^{d} V_{k}\right)^{*}$. Hence $\mathbf{v}_{n} \rightharpoonup \mathbf{v}$ implies $\varphi_{j}\left(\varphi_{[j]}\left(\mathbf{v}_{n}\right)\right) \rightarrow \varphi_{j}\left(\varphi_{[j]}(\mathbf{v})\right)$ and proves Part (a) for an elementary tensor $\varphi_{[j]}$. The result extends immediately to finite linear combinations $\varphi_{[j]} \in{ }_{a} \otimes_{k \neq j} V_{k}^{*}$.
2) LEMMA 2.3 proves $\left\|\varphi_{[j]}\left(\mathbf{v}-\mathbf{v}_{n}\right)\right\|_{V_{j}} \leq\left(\prod_{k \neq j}\left\|v_{k}^{*}\right\|^{*}\right)\left\|\mathbf{v}-\mathbf{v}_{n}\right\|_{V}$. Estimate $\|\cdot\|_{V} \leq C\|\cdot\|$ shows the inequality of the Lemma.

MAIN THEOREM 2.6. Assume (norm). For $\mathbf{v}_{n} \in{ }_{a} \otimes_{j=1}^{d} V_{j}$ assume $\mathbf{v}_{n} \rightharpoonup \mathbf{v} \in\|\cdot\| \otimes_{j=1}^{d} V_{j}$. Then

$$
\operatorname{dim} U_{j, \min }(\mathbf{v}) \leq \liminf _{n \rightarrow \infty} \operatorname{dim} U_{j, \min }\left(\mathbf{v}_{n}\right) \quad \text { for all } 1 \leq j \leq d
$$

Lemma needed for the proof:
LEMMA 2.7. Assume $N \in \mathbb{N}$ and $x_{n}^{(i)} \rightharpoonup x_{\infty}^{(i)}$ for $1 \leq i \leq N$ with linearly independent $x_{\infty}^{(i)} \in X$. Then there is an $n_{0}$ such that for all $n \geq n_{0}$ the $N$-tuples $\left(x_{n}^{(i)}: 1 \leq i \leq N\right)$ are linearly independent.

PROOF (L. 2.7). There are functionals $\varphi^{(j)} \in X^{*}(1 \leq j \leq N)$ with $\varphi^{(j)}\left(x_{\infty}^{(i)}\right)=\delta_{i j}$. Set

$$
\Delta_{n}:=\operatorname{det}\left(\left(\varphi^{(j)}\left(x_{n}^{(i)}\right)\right)_{i, j=1}^{N}\right)
$$

$x_{n}^{(i)} \rightharpoonup x_{\infty}^{(i)}$ implies $\varphi^{(j)}\left(x_{n}^{(i)}\right) \rightarrow \varphi^{(j)}\left(x_{\infty}^{(i)}\right)$. Continuity of $\operatorname{det}(\cdot)$ proves $\Delta_{n} \rightarrow \Delta_{\infty}:=\operatorname{det}\left(\left(\delta_{i j}\right)_{i, j=1}^{N}\right)=1$. Hence, there is an $n_{0}$ such that $\Delta_{n}>0$ for all $n \geq n_{0}$, but $\Delta_{n}>0$ proves linear independence of $\left\{x_{n}^{(i)}: 1 \leq i \leq N\right\}$.

PROOF (Thm 2.6). Choose a subsequence such that $\operatorname{dim} U_{j, \min }\left(\mathbf{v}_{n}\right)$ is weakly increasing. If $\operatorname{dim} U_{j, \min }\left(v_{n}\right) \rightarrow \infty$ holds, nothing is to be proved. Therefore, assume that

$$
\lim \operatorname{dim} U_{j, \min }\left(\mathbf{v}_{n}\right)=N<\infty
$$

Indirect proof: assume that $\operatorname{dim} U_{j, \min }(\mathbf{v})>N$. Since $\left\{\varphi(\mathbf{v}): \varphi \in a \otimes_{k \neq j} V_{k}^{*}\right\}$ is dense in $U_{j, \min }\left(\mathbf{v}_{n}\right)$, there are $N+1$ linearly independent vectors

$$
b^{(i)}=\varphi_{[j]}^{(i)}(\mathbf{v}) \quad \text { with } \varphi_{[j]}^{(i)} \in{ }_{a} \bigotimes_{k \neq j} V_{k}^{*} \quad \text { for } 1 \leq i \leq N+1
$$

By LEMMA 2.5, weak convergence

$$
b_{n}^{(i)}:=\varphi_{[j]}^{(i)}\left(\mathbf{v}_{n}\right) \rightharpoonup b^{(i)}
$$

holds. By LEMMA 2.7, for large enough $n$ also ( $b_{n}^{(i)}: 1 \leq i \leq N+1$ ) is linearly independent. Because of $b_{n}^{(i)}=\varphi_{[j]}^{(i)}\left(\mathbf{v}_{n}\right) \in U_{j, \min }\left(\mathbf{v}_{n}\right)$, this contradicts $\operatorname{dim} U_{j, \min }\left(\mathbf{v}_{n}\right) \leq N$.

## Application to Tensor Formats

The formats $\mathcal{T}_{\mathbf{r}}$ (Tucker), $\mathcal{H}_{\mathbf{r}}$ (hierarchical), $\mathbb{T}_{\mathbf{r}}(\mathrm{TT})$ are essentially determined by the dimension $r_{\alpha}$ of the involved subspaces $U_{\alpha} \subset \otimes_{k \in \alpha} V_{k}$.

DEFINITION 2.9. $M \subset X$ is called weakly closed, if $x_{n} \in M$ and $x_{n} \rightharpoonup x \in X$ imply $x \in M$.

Note that 'weakly closed' is stronger than 'closed', i.e., $M$ weakly closed $\Rightarrow M$ closed.

THEOREM 2.8. Under assumption (norm), the sets $\mathcal{T}_{\mathbf{r}}, \mathcal{H}_{\mathbf{r}}, \mathbb{T}_{\mathbf{r}}$ are weakly closed.

PROOF. Let $\mathbf{v}_{n} \in \mathcal{T}_{\mathbf{r}}$, i.e., there are subspaces $U_{j, n}$ with $\mathbf{v}_{n} \in \otimes_{j=1}^{d} U_{j, n}$ and $\operatorname{dim} U_{j, n} \leq r_{j}$. Note that $U_{j, \min }\left(\mathbf{v}_{n}\right) \subset U_{j, n}$ with $\operatorname{dim} U_{j, \min }\left(\mathbf{v}_{n}\right) \leq r_{j}$.

If $\mathbf{v}_{n} \rightharpoonup \mathbf{v}$, then $\operatorname{dim} U_{j, \min }(\mathbf{v}) \leq r_{j}$ and $\mathbf{v} \in \mathcal{T}_{\mathbf{r}}(\mathrm{cf}$. THEOREM 3.1).

Same argument for $\mathcal{H}_{\mathbf{r}}, \mathbb{T}_{\mathbf{r}}$.

## Application to Best Approximation

THEOREM 2.10. Let $(X,\|\cdot\|)$ be a reflexive Banach space with a weakly closed subset $\emptyset \neq M \subset X$. Then for any $x \in X$ there exists a best approximation $v \in M$ with

$$
\|x-v\|=\inf \{\|x-w\|: w \in M\}
$$

LEMMA 2.11. If $x_{n} \rightharpoonup x$, then $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$.
LEMMA 2.12. If $X$ is a reflexive Banach space, any bounded sequence $x_{n} \in X$ has a subsequence $x_{n_{i}}$ converging weakly to some $x \in X$.

PROOF of Thm 2.10. Choose $w_{n} \in M$ with $\left\|x-w_{n}\right\| \rightarrow \inf \{\|x-w\|: w \in M\}$. Since $\left(w_{n}\right)_{n \in \mathbb{N}}$ is a bounded sequence in $X$, LEMMA 2.12 ensures the existence of a subsequence $w_{n_{i}} \rightharpoonup v \in X . v$ belongs to $M$ because $w_{n_{i}} \in M$ and $M$ is weakly closed. Since also $x-w_{n_{i}} \rightharpoonup x-v$, LEMMA 2.11 shows $\|x-v\| \leq \lim \inf \left\|x-w_{n_{i}}\right\| \leq \inf \{\|x-w\|: w \in M\}$.

Conclusion for $M \in\left\{\mathcal{T}_{\mathbf{r}}, \mathcal{H}_{\mathbf{r}}, \mathbb{T}_{\mathbf{r}}\right\}$ :
COROLLARY 2.13: If (norm), best approximations in the formats $\mathcal{T}_{\mathbf{r}}, \mathcal{H}_{\mathbf{r}}, \mathbb{T}_{\mathbf{r}}$ exist.

## 4 Minimal Subspaces in Topological Tensor Spaces

Where is the Problem?

For a general $\mathbf{v} \in\|\cdot\| \otimes_{j=1}^{d} V_{j}$ the subspace $U_{j, \min }(\mathbf{v})$ is defined. Set

$$
\mathrm{U}(\mathrm{v}):=\|\cdot\| \bigotimes_{j=1}^{d} U_{j, \min }(\mathrm{v}) .
$$

One expects the statement

$$
\mathbf{v} \in \mathbf{U}(\mathrm{v}) .
$$

We shall prove this statement in three different situations.
A) $\operatorname{dim} U_{j, \min }(\mathrm{v})<\infty$,
B) Hilbert space setting,
C) convergence $\mathbf{v}_{n} \rightarrow \mathbf{v}$ (tensorrank $\left(\mathbf{v}_{n}\right) \leq n$ ) fast enough.

Note that the definition of minimal subspaces via the lattice property is not obvious:
$\mathbf{v} \in \operatorname{closure}\left(X_{1} \otimes_{a} X_{2}\right) \cap \operatorname{closure}\left(Y_{1} \otimes_{a} Y_{2}\right) \nRightarrow \mathbf{v} \in \operatorname{closure}\left(\left(X_{1} \cap Y_{1}\right) \otimes_{a}\left(X_{2} \cap Y_{2}\right)\right)$

THEOREM 3.1. Assume (norm), $\mathbf{v} \in \mathbf{V}=\|\cdot\|{ }_{j=1}^{d} V_{j}$ with $\operatorname{dim}\left(U_{j, \min }(\mathrm{v})\right)<\infty$. Then $\mathbf{v}$ belongs to the algebraic tensor space $\mathbf{U}=a \otimes_{j=1}^{d} U_{j, \text { min }}(\mathbf{v})$.

LEMMA of Auerbach 3.2. For any $n$-dimensional subspace of a Banach space $X$, there exists a basis $\left\{x_{\nu}: 1 \leq \nu \leq n\right\}$ and a corresponding dual basis $\left\{\varphi_{\nu}: 1 \leq \nu \leq n\right\}$ such that $\left\|x_{\nu}\right\|=\left\|\varphi_{\nu}\right\|^{*}=1(1 \leq \nu \leq n)$.

THEOREM 3.3. $Y \subset X$ be subspace of a Banach space $X$ with $\operatorname{dim}(Y) \leq n$. Then there exists a projection $\Phi \in \mathcal{L}(X, X)$ onto $Y$ such that

$$
\|\Phi\|_{X \leftarrow X} \leq n^{1 / 2}
$$

The bound is sharp for general Banach spaces, but can be improved to $\|\Phi\|_{X \leftarrow X} \leq$ $n^{1 / 2-1 / p}$ for $X=L^{p}$.

THEOREM 3.4. Let $\|\cdot\|$ be a crossnorm. Assume that $\mathbf{v} \in \mathbf{V}=\|\cdot\| \otimes_{j=1}^{d} V_{j}$ is the limit of $\mathbf{v}_{n}=\sum_{i=1}^{n} \otimes_{j=1}^{d} v_{i, n}^{(j)}$ with the speed

$$
\left\|\mathbf{v}_{n}-\mathbf{v}\right\| \leq o\left(n^{-3 / 2}\right) .
$$

Then $\mathbf{v} \in \mathbf{U}=\|\cdot\| \otimes_{j=1}^{d} U_{j, \min }(\mathbf{v})$, i.e., $\mathbf{v}=\lim \mathbf{u}_{n}$ with $\mathbf{u}_{n} \in{ }_{a} \otimes_{j=1}^{d} U_{j, \min }(\mathbf{v})$.

PROOF. Consider $\mathbf{V}=V_{1} \otimes V_{[1]} . \mathbf{v}_{n} \in \mathbf{V}$ has a representation in $U_{1, \min }\left(\mathbf{v}_{n}\right) \otimes$ $U_{[1], \min }\left(\mathbf{v}_{n}\right)$ with $r:=\operatorname{dim}\left(U_{1, \min }\left(\mathbf{v}_{n}\right)\right)=\operatorname{dim} U_{[1], \min }\left(\mathbf{v}_{n}\right) \leq n$. Renaming $n$ by $r$, we obtain the representation $\mathbf{v}_{n}=\sum_{i=1}^{n} v_{i}^{(1)} \otimes v_{i}^{[1]}$. According to COROLLARY 1.7, we can fix a basis $\left\{v_{i}^{[1]}\right\}$ and recover $\mathbf{v}_{n}=\sum_{i=1}^{n} \psi_{i}\left(\mathbf{v}_{n}\right) \otimes v_{i}^{[1]}$ from the dual basis $\left\{\psi_{i}\right\}$. Define

$$
\mathbf{u}_{n}^{I}:=\sum_{i=1}^{n} \psi_{i}(\mathbf{v}) \otimes v_{i}^{[1]} \in U_{1, \min }(\mathbf{v}) \otimes_{a} V_{[1]}
$$

Due to COROLLARY 1.7, the choice of the basis $\left\{v_{i}^{[1]}\right\}$ is arbitrary. Choosing the basis according to Auerbach's LEMMA 3.2, we can estimate

$$
\begin{aligned}
\left\|\mathbf{u}_{n}^{I}-\mathbf{v}_{n}\right\| & =\left\|\sum_{i=1}^{n}\left(\psi_{i}(\mathbf{v})-\psi_{i}\left(\mathbf{v}_{n}\right)\right) \otimes v_{i}^{[1]}\right\| \leq \sum_{i=1}^{n}\left\|\psi_{i}\left(\mathbf{v}-\mathbf{v}_{n}\right)\right\|\left\|v_{i}^{[1]}\right\| \\
& \leq\left(\sum_{i=1}^{n}\left\|\psi_{i}\right\|^{*}\left\|v_{i}^{[1]}\right\|\right)\left\|\mathbf{v}-\mathbf{v}_{n}\right\| \underset{\text { Auerbach }}{\leq} n\left\|\mathbf{v}-\mathbf{v}_{n}\right\| .
\end{aligned}
$$

Analogously, we can choose the basis $\left(v_{i}^{(1)}\right)$ according to Auerbach's LEMMA 3.2 and define $\mathbf{u}_{n}^{I I}:=\sum_{i=1}^{n} v_{i}^{(1)} \otimes \psi_{i}(\mathbf{v}) \in V_{1} \otimes_{a} U_{[1], \min }(\mathrm{v})$ with

$$
\left\|\mathbf{u}_{n}^{I I}-\mathbf{v}_{n}\right\| \leq n\left\|\mathbf{v}-\mathbf{v}_{n}\right\|
$$

$$
\left\|\mathbf{u}_{n}^{I}-\mathbf{v}_{n}\right\| \leq n\left\|\mathbf{v}-\mathbf{v}_{n}\right\| \text { and }\left\|\mathbf{u}_{n}^{I I}-\mathbf{v}_{n}\right\| \leq n\left\|\mathbf{v}-\mathbf{v}_{n}\right\|
$$

We choose the projection $\Phi$ onto the subspace $U_{[1], \min }(\mathrm{v})$ of dimension $n$ from THEOREM 3.3 and define

$$
\mathbf{u}_{n}:=(i d \otimes \Phi) \mathbf{u}_{n}^{I} \in U_{1, \min }(\mathbf{v}) \otimes_{a} U_{[1], \min }(\mathbf{v}) \subset a \bigotimes_{j=1}^{d} U_{j, \min }(\mathbf{v})
$$

THEOREM 3.3 implies the estimates

$$
\begin{aligned}
\left\|(i d \otimes \Phi) \mathbf{v}_{n}-\mathbf{u}_{n}^{I I}\right\| & =\left\|(i d \otimes \Phi)\left(\mathbf{v}_{n}-\mathbf{u}_{n}^{I I}\right)\right\| \leq n^{1 / 2}\left\|\mathbf{v}_{n}-\mathbf{u}_{n}^{I I}\right\| \leq n^{3 / 2}\left\|\mathbf{v}-\mathbf{v}_{n}\right\| \\
\left\|\mathbf{u}_{n}-(i d \otimes \Phi) \mathbf{v}_{n}\right\| & =\left\|(i d \otimes \Phi)\left(\mathbf{u}_{n}^{I}-\mathbf{v}_{n}\right)\right\| \leq n^{1 / 2}\left\|\mathbf{u}_{n}^{I}-\mathbf{v}_{n}\right\| \leq n^{3 / 2}\left\|\mathbf{v}-\mathbf{v}_{n}\right\|
\end{aligned}
$$

Altogether we get the estimate

$$
\begin{aligned}
\left\|\mathbf{u}_{n}-\mathbf{v}\right\| & =\left\|\left(\mathbf{u}_{n}-(i d \otimes \Phi) \mathbf{v}_{n}\right)+\left((i d \otimes \Phi) \mathbf{v}_{n}-\mathbf{u}_{n}^{I I}\right)+\left(\mathbf{u}_{n}^{I I}-\mathbf{v}_{n}\right)+\left(\mathbf{v}_{n}-\mathbf{v}\right)\right\| \\
& \leq\left(2 n^{3 / 2}+n+1\right)\left\|\mathbf{v}-\mathbf{v}_{n}\right\|
\end{aligned}
$$

The assumption $\left\|\mathbf{v}-\mathbf{v}_{n}\right\| \leq o\left(n^{-3 / 2}\right)$ implies $\left\|\mathbf{u}_{n}-\mathbf{v}\right\| \rightarrow 0$.

THEOREM 3.5. $V_{j}$ and $\mathbf{V}$ Hilbert spaces. Then for all $\mathbf{v} \in \mathbf{V}, \mathbf{v} \in\|\cdot\|{ }_{j=1}^{\otimes} U_{j, \min }(\mathbf{v})$.
PROOF. The orthogonal decomposition $V_{j}=U_{j, \min }(\mathrm{v})+U_{j, \text { min }}^{\perp}(\mathrm{v})$ defines the orthogonal projection $P_{j}$ onto $U_{j, \min }(\mathbf{v})$. Then $\mathbf{P}:=\otimes_{j=1}^{d} P_{j}$ is the projection of $\mathbf{V}$ onto $\mathbf{U}:=\|\cdot\| \otimes_{j=1}^{d} U_{j, \text { min }}(\mathbf{v})$. It is easy to verify that $w_{j} \in U_{j, \text { min }}^{\perp}(\mathbf{v})$ leads to $\left(i d \otimes \ldots \otimes w_{j} \otimes \ldots \otimes i d\right)(\mathbf{v})=0$ and to $\left(i d \otimes \ldots \otimes P_{j} \otimes \ldots \otimes i d\right)(\mathbf{v})=\mathbf{v}$. Since $\prod_{j=1}^{d}\left(i d \otimes \ldots \otimes P_{j} \otimes \ldots \otimes i d\right)=\mathbf{P}$, the equation $\mathbf{P v}=\mathbf{v}$ shows $\mathbf{v} \in \mathbf{U}$.

To make the last conclusion more explicit, consider a sequence

$$
\mathbf{v}_{n}=\sum_{i=1}^{m(n)} \bigotimes_{j=1}^{d} v_{i, n}^{(j)} \in a \bigotimes_{j=1}^{d} V_{j} \quad \text { with } \quad v_{i, n}^{(j)} \in V_{j} \quad \text { and } \quad\left\|\mathbf{v}-\mathbf{v}_{n}\right\| \rightarrow 0
$$

Set $\mathbf{u}_{n}:=\mathbf{P}_{\mathbf{v}_{n}}=\sum_{i=1}^{m(n)} \bigotimes_{j=1}^{d} P_{j} v_{i, n}^{(j)} \in{ }_{a} \bigotimes_{j=1}^{d} U_{j, \min }(\mathbf{v})$. Since $\mathbf{P} \mathbf{v}=\mathbf{v}$, one obtains the estimate $\left\|\mathbf{v}-\mathbf{u}_{n}\right\|=\left\|\mathbf{v}-\mathbf{P} \mathbf{v}_{n}\right\|=\left\|\mathbf{P}\left(\mathbf{v}-\mathbf{v}_{n}\right)\right\| \leq\left\|\mathbf{v}-\mathbf{v}_{n}\right\| \rightarrow 0$, i.e., there is a sequence in $a \otimes_{j=1}^{d} U_{j, \min }(\mathbf{v})$ which converges to $\mathbf{v}$.

## 5 Intersection Tensor Spaces

Problem: For spaces like $C^{1}(I \times J)=C^{1}(I) \otimes_{\|\cdot\|} C^{1}(J)$ or $H^{1}(I \times J)=$ $H^{1}(I) \otimes_{\|\cdot\|} H^{1}(J)$, the tensor product of the dual spaces is not continuous and the injective norm is not bounded.
In the following, the Sobolev space $H^{1}$ is taken as example.

## Algebraic Intersections Spaces

For $I_{j} \subset \mathbb{R}$ set $\mathbf{I}:=I_{1} \times \ldots \times I_{d}$. Two possibilities to define $H^{1}(\mathbf{I}):$

$$
\begin{aligned}
H^{1}(\mathbf{I})= & \operatorname{closure}\left({ }_{a} \bigotimes_{j=1}^{d} H^{1}\left(I_{j}\right)\right), \\
H^{1}(\mathbf{I})= & \operatorname{closure}\left(H^{1}\left(I_{1}\right) \otimes_{a} L^{2}\left(I_{2}\right) \otimes_{a} \ldots \otimes_{a} L^{2}\left(I_{d}\right)\right) \\
& \cap \operatorname{closure}\left(L^{2}\left(I_{1}\right) \otimes_{a} H^{1}\left(I_{2}\right) \otimes_{a} \ldots \otimes_{a} L^{2}\left(I_{d}\right)\right) \cap \ldots
\end{aligned}
$$

Standard definition of the induced scalar product would give $H_{\text {mix }}^{1}(\mathrm{I})$.

An algebraic tensor $\mathbf{v}$ leads to

$$
U_{j, \min }(\mathbf{v}) \subset H^{1}\left(I_{j}\right), \quad \mathbf{v} \in \mathbf{U}:=a \bigotimes_{j=1}^{d} U_{j, \min }(\mathbf{v}) \subset a \bigotimes_{j=1}^{d} H^{1}\left(I_{j}\right) \subset H_{\text {mix }}^{1}(\mathbf{I})
$$

## Topological Intersections Spaces

$$
U_{j, \min }(\mathrm{v})=\operatorname{closure}\left\{\varphi(\mathrm{v}): \varphi \in{ }_{a} \bigotimes_{k \neq j} L^{2}\left(I_{k}\right)\right\} .
$$

Condition (norm) becomes
$\|\cdot\|_{\vee\left(L^{2}\left(I_{1}\right), \ldots, L^{2}\left(I_{j-1}\right), H^{1}\left(I_{j}\right), L^{2}\left(I_{j+1}\right), \ldots, L^{2}\left(I_{d}\right)\right)} \lesssim\|\cdot\|_{H^{1}(\mathbf{I})} \quad$ for all $1 \leq j \leq d$ (of course satisfied for $H^{1}(\mathbf{I})$ ).

Then analogous conclusions.

