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1 Formats Characterised by Subspaces

1) Tensor Subspace Representation (Tucker Format)
Forve V=V g.. . @V there are subspaces U c v0) of
(possibly smaller) dimension dim U(7) = r; with

weU=0Veu®g.. oud

Numerical realisation: UU) = span{b(j), . (‘7)} leads to

1</1<r 1<l3<rq

Format: 7r = {u e UW @ ... © U@ : dim U = rj}



2) Hierarchical Tensor Format

Explanation for the example d =4, V= V(1) @ V(2) @ v3) g v (4)

Format: Hy

— (1) gy(®) 2 V3 gy
U U U U
= yWeu® g vlgu®
_ 1/ (1+2) 2 1/ (3+4)
U U
_ U(1—|-2) ® U(3—|—4)
v (1-4)
U
[7(1—4)

dim UU) = T; as in tensor subspace format
dim U(®) = 7, for a = (1 +2), (3 + 4)

dim U(®) = rq, for o = (1 — 4)
veul-4)



3) TT Format

Vi WL V3V Ve® ...




Questions:

d d
A) Given v € 4 ® Vj, what are the subspaces U; C V; with v € 4 & U;?

j=1 j=1
What are the minimal subspaces — U min(V)-

How does U; in(v) depend on v? In particular, dim U; 5in(Vv)?

d
B) Best approximation problem: Given v € @ V; and some norm |[|-||, is there
j=1
some u € 7y (or € Hy or € Ty) such that
|lv —ul|| = inf_[[v—w]|7?

weTy
Case of dim V] — oo included!



2 Minimal Subspaces of a Tensor

General Remarks

REMARK 1.1. Forv € 4 ®§-l:1 V; there are always finite dimensional subspaces

d
U; C V; satisfying v € aj@l Uj.

PROOF: By definition of the algebraic tensor space, v € a®§-l:1 V; is a finite
linear combination

L)
V = Z ® ’U]/]
v=17=1
for some n € Ng and vy) € Vj. Define
U :=spanfvy) :1<v<n} for1<j<d
Then ve U := a®§'l=1 U; with dim(U;) < n.



The next, well-known result is formulated for d = 2.

LEMMA 1.2. For any tensor x € V®,W thereis an r € Ny and a representation

r
)(ZZ}j?%Q@U%
1=1

with linearly independent vectors {v; :1 < ¢ <r}CV and{w; :1 <i<r}CW.

PROOF. Take any representation x = > ; v;Quw;. If, e.g., the {v; : 1 <17 < n}

1=
are not linearly independent, one v; can be expressed by the others. Without

loss of generality assume vy, = Z?’;ll a;v;. Then

n—1 n—1
Vn & Wn = Z a;v; | @ wp = Z v; ® (a;wnp)

shows that x possesses a representation with only n — 1 terms:

n—1 n—1
- /
X = Zvi@)wi —|—vn®wn:Zvi®w,§ with  w; (= w; + a;wn.

Since each reduction step decreases the number of terms by one, this process

terminates, i.e., we obtain a representation with linearly independent v; and w;.



DEFINITION 1.3. For a tensor v € V1 ®q Vo, the minimal subspaces are denoted
by U1 min(v) and Up nin(v) defined by the properties

vV C Ul,min(v) ®a Ul,min(v)a
v € Ui ®qUz = Uy min(v) C Uz, Upmin(v) C U>.

To ensure the existence of minimal subspaces Uy, Uy with v € U7 ® Up, we need

a lattice structure, which is subject of the next lemma.

Then:
Consider the family {(Ul,ou Uz,a) : o € F} of all subspaces such that
vV € Uy, ®a Uy for all a € F and set

Uj,min(V) . ﬂ Uj.a-
ackF



LEMMA 14 vE X1 ®:Xoand vEY I ®uYo = v E(X1NY])Re(XoNYr).

PROOF. By assumption, v has the two representations
Ny
v = Z :131(,1) (2) Z y(l) with 33( i) c X;, vy (Z) cY;.
v=1

Thanks to Lemma 1.2, {x(l)} {w(z)} {y(l)} {y(z)} may be assumed to be
hneaHylndependent

Dual basis 5,& c X2 of {x(z)} §(2)( ,(/2)) = dpp.

Application of id ® fu to the first representation: (id ® fu ))(V) = LE'u :

Z 15(2)( )y

application to second representation: >
N xgbl) _ Zny (2)( (2)) (1) _, x(y )
Dual basis 5 of {m,(/ )} and application of 5& ® id to v proves :L'( ) € Y5.

Hence ) € X; N Y; is shown, i.e., v € (X1 N Y]) ®q (X2 N Ya).



LEMMA 1.5. Assume v = Y| v;®@w; with linearly independent {v; : 1 <7 < r}
and {w; : 1 <4 < r}. Then they span the minimal spaces:

Ul min(v) =span{vy : 1 <v <r} and Upmin(v) =span{w,:1 <v <r}.
In particular, dim(U; min(v)) = dim(Uz min(v)) = 7.

PROPOSITION 1.6. Let v € V] ®q V2. The minimal subspaces Uy min(v) and
Us min(Vv) are characterised by

Upmin(v) = {({d® A) (v) : A € 3},
Uz min(v) = {(A @id) (v) : A € V] ],

.

1=

(a3 (£ uow) = £ (@03 @sw) = £ 2 w)-u

Matrix interpretation (v = M):

UL min(V) = range(M),  Ua min(v) = range(M ).



COROLLARY 1.7 (a) Once Ujmin(v) and Uy min(v) are given, one may
select any basis {v; : 1 < i < n} of Uy nin(v) and finds a representation
v =31, v; ®w; with some basis {w;} of Uy min(V).

Vice versa, one may select a basis {w; : 1 < i < n} of Uy min(v), and obtains

v =31, v; ®w; with some other basis of Uj min(V).

(b) If we fix a basis {wy, : 1 < v < n} of a subspace U,, there are mappings

{V,:1<v<n}CL(Vi; ®Ujp, Vi) such that

n
V(W) ® wy for all w € V1 ® U».

W =
r=1

PROOF Of (b) Let W = ZI’I;L:]. Vv ® Wy .
Choose a dual basis {9, } to wy. i.e., Y, (wyu) = dvu.
Set w;/ e Zd ® wl/ —

Wy (w) = Z (td®,) (v; @ w;) = Z v @ P, (wi) = vu.



Definition in the General Case

Now d > 3. By Remark 1.1 we may assume v € U = ®§-l:1 U; with finite
dimensional subspaces U; C V;. The lattice structure from Lemma 1.4

generalises to higher order:
LEMMA 1.8. («®%_; X;) N (@1, Y;) = a®L; (X;NYj).

PROOF. Start of the induction at d = 2 by Lemma 1.4. Assume assertion for
d — 1 and write a®?:1 Xj as X1 ®X[1] with X[l] — a®§i:2 Xj . Similarly, use
a®7_1Y; = Y1 ® Y]j}. Lemma 1.4 states that v € (X1 N Y1) ® (X[ N Yy)) -
By induction hypothesis, X[;1 N Y];] = o« ®7_, (X; NY;) is valid proving the

assertion.

The minimal subspaces Uj,min(V) are given by the intersection of all U; satisfying

\AS a®?:1U



Fora= ® ap €4 Q V] definea: V- V; by
k#j k#j

a(v)i=(01®..®aj_10id®aj1®...®aq) (v),

. (é) U(k)) _ (H ak(v<k))) )
k=1

K

LEMMA 1.9. LetveEeV = a®§-l:1 V;. The two spaces

Ui (v) == a(v): a€a®Vk’},

\ k7]

UH(v) = {a): ae(L® w)’}

\ k#j

coincide.

PROOF. Mappings « are applied to v € U := ®§l:1 Uj, i.e., one may replace
a c CL@k;éj Vk:/ by a € a®k7éj Uli: and o € (a®k7éj Vk), by a € (a®k7éj Uk),-
Since dim(Uy) < oo, a®k7éj U]/€ = (a®k7£j Uk)/-



Matricisation: v € V; ® V[; with Vi1 := 0 Qg5 Vi -
. ) /
= V € Uj min (V) ® V) With Ujj min = {(zd @A) (v): A€ (V) } = UH(v).

THEOREM 1.10. For any v € V = a®§-z:1Vj there exist minimal subspaces
Uj min(v) (1 <j < d). An algebraic characterisation of U; min(Vv) is

Uj,min(v)
= span{(oq@...®ozj_1®id®ozj+1®...®ad)(V): ake\/éfork;éj}

or equivalently

Uj min(v) = {a(v) Ca€q @ Vk/} :
k#j



3 Topological Tensor Space

(Vj, ||||]> are Banach spaces. The tensor space V := 1 ®§-i:1 V is now the

completion of the algebraic tensor space a®?:1 Vi w.r.t. a norm |[-]|.
Notations: V* dual spaces with dual norm 14117 -

DEFINITION 2.1. For v e V = o ®9_; V; define |||\, by

|v||\, := sup y I
0%, 1@
(injective norm [Grothdieck 1953]).

:0¢¢(j)evj*,1§j§d}.

THEOREM 2.2. Any norm ||| on o ®9_; Vj , for which

d d

®j:1 : V1><...><Vd—>a,®j:1Vj and
d d

Qi+ Vi x o xVi—=aQ. VS

are continuous, cannot be weaker than ||-||,,, i.e.,

-2 M-y - (norm)



LEMMA 2.3. For fixed j € {1,...,d}, p = ®k:7éj’0;2 € 0®pss Vk* maps
(a ®%:1 Vi s ||||\/) into V;; via

d
o (@ ,U(k:)) — I1 UZ(U(k)) o).

The mapping ¢ is denoted by p =] ® ... ® v;-‘_l ® id ® v;-k+1 ®...Q v
Then ¢ is continuous, i.e., ¢ € L (\/ ®§€l:1 Vi, V]) . Its norm is

_ * || ¥
ke{l,....d}\{j}

PROOF. Let v;f € Vj* with ||v;k||;< = 1 and note that the composition v}-k o Y
equals v* := ®g:1 'UZ. Hence,

d
el = max Joiev)| = max | op)w)| = max |(Q_, k)W)
||Uj||j:1 ||Uj||j:1 ||Uj||j:1
and
d d ¥ d
F 3 X
sup |vF(e(V)| = sup || @i | M| =@ wk| =TI Ikl = TT Ivglx-
[v]ly=1 Ivllv=1]\k=1 k=1 |y k=1 k]




LEMMA 2.4. For v e V = ¢ ®%_; V; define

Uj”[(v) = {a(v) L a € a®k;éj Vk*},
Ujlv(v) = {a(v) NOAS (||||®k;éj Vk)*}

Then Ul (v) = UV (v) = Uj min(v)-

PROOF. Hahn-Banach



Sequences of Minimal Subspaces

d
V= &® V; Banach tensor space with ||| satisfying (norm): ||| 2 |||\, -
j=1

The following definition U; i, (V) can also be applied to v € -] ®§-l:1 Vi\a ®;-i:1 Vi

Uj,min(v)
= closure (span{(gol Q... 0p;i_1QidR ;i1 ®...®g0d) (V) : @, € V) forv 75]}

= closure {go(v) L p € a®k;éj Vk*} = closure {cp(v) L € (||'|| ®k;éj Vk)*} :

By LEMMA 2.3, the involved mappings ¢ : V — V; are continuous.

Note that

A for v € a®§-i:1 V; the subspace U; min(v) is defined by the minimality condi-
tion. Thm 1.10 shows U; in(v) = span {<®k7§j ozk> (V) :ap € Vé} , which for
these v coincides with the definition above.

A for v € -] ®§i:1 Vi\ a®§l:1 V; the equation above is a definition. Whether
vVE | ®§-l:1 Uj min(v) with minimal U; i, (V) holds, is not yet stated.



A sequence xy, € X is weakly convergent, if limy o0 ¢(xp) exists for all p € X*.
(zn)pen converges weakly to x € X, if limp(xzn) = @(x) for all ¢ € X™.
Notation: =, — x.

LEMMA 2.5. Assume (norm). Let @1 € aQpx;Vy and vp,v € V with
vp — V. (@) Then ¢ri(vn) = ¢;1(v) in V.
(b) The estimate

lep(v = va)lly; < Cllv = vall

*

holds for elementary tensors P51 S a®k7éj Vk* with ‘ — 1, where C' is the

Uk
norm constant involved in (Norm).

PROOF. 1) Let o1 = Qi vp (v, € V). To prove ¢;1(vn) — ¢[;(Vv) show
for all ¢; € V" that vi(erj1(vn)) — ¢;(e[;1(v)). The composition

Pj O P = ®§€l:1 v}, belongs to v ®%:1 V,¥ and because of (norm) also to

V* = (|!-||®%=1 Vi)*. Hence vy, — v implies ©;(¢[;1(vn)) — ¢;(¢[;(v)) and
proves Part (a) for an elementary tensor it The result extends immediately to
finite linear combinations ©14] € a k£ Vk* :

2) LEMMA 2.3 proves |[[pp;1(v — Vn)HV} < (Hk;éj‘
-]y < C|-]| shows the inequality of the Lemma.

) lIv = vally . Estimate

k
Uk



MAIN THEOREM 2.6. Assume (norm). For vy, € ¢ @7_; V; assume
Vnp — V & | ®;~i21 ‘/j Then

dim U min(v) < liminfdim U; in(vn) forall 1 < j <d.

n—aoo
Lemma needed for the proof:

LEMMA 2.7. Assume N € N and :m(f) — :U(()Zo) for 1 < 1 < N with linearly
independent asgbo) € X. Then there is an ng such that for all n > ng the
N-tuples (mg) : 1 <4 < N) are linearly independent.

PROOF (L. 2.7). There are functionals /) € X* (1 < j < N) with
90(3)(33&75)) = 523 Set

A, = det ((<p(j)(x§f)))§};:1> |

:m(f) — :U((Q implies go(j)(azg)) — gp(j)(a:gé)). Continuity of det(-) proves
Ny — A = det((5w)N

L,J=

all n > ng, but A;, > 0 proves linear independence of {azq(»f) 1 <i < N}

1) = 1. Hence, there is an ng such that A, > 0 for



PROOF (Thm 2.6). Choose a subsequence such that dim U, min(vn) is weakly
increasing. If dimU; nin(vn) — oo holds, nothing is to be proved. Therefore,
assume that

limdim U; nin(vn) = N < co.
Indirect proof: assume that dim U; nin(v) > N. Since {go(v) L P E a Q4 Vk*}
is dense in U; min(Vn), there are N + 1 linearly independent vectors
() — L) ith ") ' '
b Pl (v) with P € a®k:7éj Vi for1<i:< N+ 1.
By LEMMA 2.5, weak convergence
pli) .— 90[ ](V ) — ()

holds. By LEMMA 2.7, for large enough nalso (B 11 <i< N+1)is
(i) _

linearly independent. Because of by,
dim U, min(vn) < N.

= 9| ])(Vn) € U min(Vn), this contradicts



Application to Tensor Formats

The formats 7y (Tucker), Hr (hierarchical), Ty (TT) are essentially determined
by the dimension rq of the involved subspaces Uy C Qrcn Vi-

DEFINITION 2.9. M C X is called weakly closed, if xt, € M and ©,, = x € X
imply © € M.

Note that ‘weakly closed’ is stronger than ‘closed’, i.e.,
M weakly closed = M closed.

THEOREM 2.8. Under assumption (norm), the sets 7y, Hy, Ty are weakly
closed.

PROOF. Let v, € 7Tr, i.e., there are subspaces U, ,, with vy, € ®§-i:1 Uj n and
dimU,,, < rj. Note that U; min(vn) C Uj,, with dimU; min(vn) < rj.

If vi, = v, then dimU; nin(v) < 7j and v € 7r (cf. THEOREM 3.1).

Same argument for Hy, Ty.



Application to Best Approximation

THEOREM 2.10. Let (X, ||-||) be a reflexive Banach space with a weakly closed
subset ) # M C X. Then for any x € X there exists a best approximation
v € M with

|z — v|| = inf{||x —w| : w € M}.

LEMMA 2.11. If z, — «, then ||z|| < liminf ||z .

n—aeo

LEMMA 2.12. If X is a reflexive Banach space, any bounded sequence z,, € X
has a subsequence xy, converging weakly to some x € X.

PROOF of Thm 2.10. Choose wy, € M with ||z —wy| — inf{||lz—w]||: we M}.
Since (wn),cN is a bounded sequence in X, LEMMA 2.12 ensures the
existence of a subsequence wy, — v € X. v belongs to M because wy, € M

and M is weakly closed. Since also z — wp, — = — v, LEMMA 2.11 shows
|z — ol <liminf ||z —wny,|| <inf{|lz —w|| : w e M}.

Conclusion for M € {7y, Hy, Tr}:

COROLLARY 2.13: If (norm), best approximations in the formats 7y, Hy, Ty
exist.



4 Minimal Subspaces in Topological Tensor Spaces

Where is the Problem?

For a general v € | ®§i:1 V; the subspace U; nin(Vv) is defined. Set

d
U(V) = ”” ® U')min(V) .
j=1

One expects the statement

v € U(v).
We shall prove this statement in three different situations.
A) dim U; min(v) < oo,

B) Hilbert space setting,
C) convergence vy, — v (tensorrank(vy) < n) fast enough.

Note that the definition of minimal subspaces via the lattice property is not
obvious:

v € closure (X1 ®q Xo)Nclosure (Y1 ®q Y2) & v € closure ((X1 N Y1) Ra (X2 NY?))



d
THEOREM 3.1. Assume (norm), v eV = ||,|| ® Vi with dim(U; min(v)) < oo.

Then v belongs to the algebraic tensor space U = ®] 1 Ui min(V).

LEMMA of Auerbach 3.2. For any n-dimensional subspace of a Banach space X,
there exists a basis {z, : 1 < v < n} and a corresponding dual basis {¢,, : 1 < v < n}
such that ||z,|| = ||le, ]| =1 (1 <v <n).

THEOREM 3.3. Y C X be subspace of a Banach space X with dim(Y) < n.
Then there exists a projection ® € £(X, X) onto Y such that

1/2
|l x < n'/2

The bound is sharp for general Banach spaces, but can be improved to ||®|| .y <
n1/2=1/p for X = LP.

THEOREM 3.4. Let ||-[| be a crossnorm. Assume that v.e V = ®§-l:1 Vi is
the limit of vy, = 371" 4 ®J 1V Z(‘Q with the speed

v — v|| < o(n~3/?).

Thenve U= ®j 1 Ujmin(Vv),i.e., v =limuy, with u, € a®3 1 Uj min(V) -



PROOF. Consider V =V1 ® V[1}. vi € V has a representation in U1l,min(Vn) ®
Ul1],min(vn) with 7 := dim(Uy min(vn)) = dim Upq) min(Vn) < n. Renaming n
by 7, we obtain the representation v, = > 1 4 fuz(l) ®vz[1]. According to COROL-
LARY 1.7, we can fix a basis {vz[l]} and recover vy, = Y71 1 (V) ® fuz[l] from
the dual basis {1, }. Define

u{b = Z Y;(v) ® ’07!1] S Ul,min(v) Qa V[l]
1=1

Due to COROLLARY 1.7, the choice of the basis {vEl]} is arbitrary. Choosing
the basis according to Auerbach’'s LEMMA 3.2, we can estimate

Il = val = |3 (a(v) = ¥3(va)) @ oM < ST ws(v = va)lllloMY)]
=1 =1
< (zl ||wi||*|v£”||) Iv=vall < nllv=val.

Analogously, we can choose the basis (vgl)) according to Auerbach’s LEMMA
3.2 and define ul! := > fuz(l) ® ¥i(v) € V1 ®a Upq) min(V) with

lug" = vall < nllv —val.



luj, = vall < nflv = vall and |lug" — vall < nllv —va.

We choose the projection ® onto the subspace Upy) min(V) of dimension n from
THEOREM 3.3 and define

d
up = (id ® P) u’{l, = Ul,min(V) Xa U[l],min(v) Coa ® Uj,min(v) .
j=1
THEOREM 3.3 implies the estimates
| (id @ ®) v — ulf|| = || (id ® ®) (vi — uf) || < n'/2[lvi — ulf|| < 032 ||v — v,
lun — (id ® ®) val = || (id ® @) (u), — va) | < n2|uf, = vil] < n*2||v = v,

Altogether we get the estimate

lun = vi| = || (un = (id ® D) va) + ((id ® ®) v — upl) + (W) — v ) + (v — V) |
< (2032 4 n4+1) v = vall.

The assumption ||[v — vi|| < o(n~3/2) implies ||u, — v|| — 0.



d
THEOREM 3.5. Vj and V Hilbert spaces. Thenforallve V,ve | & Uj min(V).
j=1

PROOF. The orthogonal decomposition V; = U; min(v) +U ] mln(V) defines the

orthogonal projection P; onto U nin(v). Then P = ®j: j is the projection of
V onto U : =1 ®] 1 J,

(id®...0w;®...®id)(v) =0and to (id®...® P;®...®id) (v) = v.
Since H;izl (id@...@Pj®...®id> — P, the equation Pv = v shows v € U.

min(V)- It is easy to verify that w; E UJJ,_mIn(V) leads to

To make the last conclusion more explicit, consider a sequence

m(n) d d .
V= ) ®v(‘7)€a®vj with fug‘QEVj and |[v—vyl| — 0.
1=1 j=1 ]=

Set uy, := Pvy = Zm(n) ® Pjvz(]) a®] 1 Uj min(Vv) . Since Pv = v, one
obtains the estimate ||v — unH =|[|[v-Pvy||=|P(v—=vn) | <|[v—vn| — 0,

U

.min(V) which converges to v.

i.e., there is a sequence in a®] 1



5 Intersection Tensor Spaces

Problem: For spaces like C1(I x J) = Cl(I) R Cl(J) or HY(I x J) =
HY(I) 1. H1(J), the tensor product of the dual spaces is not continuous and
the injective norm is not bounded.

In the following, the Sobolev space H' is taken as example.

Algebraic Intersections Spaces

For I; C Rset I:=1I; X ... x I;. Two possibilities to define H() :

d
HY 1) = closure(a®H1([j)),
=1
HYI) = closure(H(I1) ®q L*(I2) ®a ... ®a L*(13))
Nclosure(L?(11) ®aq HY(I5) ®a ... ®a L*(1y)) N ...

Standard definition of the induced scalar product would give H1. (I).

mix



An algebraic tensor v leads to

d d
Uj,min(v) C Hl(Ij)a veU:=g4 ® Uj,min(v) Ca ® Hl(lj) C Hr%ﬂx(l)-
j=1 j=1

Topological Intersections Spaces

Uj min(v) = closure {go(v) LY E a®k;éj L2(]k)}.

Condition (norm) becomes

lvzemy,.... L2,y 5 (1) L2 0) L2(10)) S @y forall1<j<d

(of course satisfied for H1(I)).

Then analogous conclusions.



