Minimal Subspaces

Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Inselstr. 22-26, D-04103 Leipzig, Germany wh@mis.mpg.de

http://www.mis.mpg.de/scicomp/hackbusch_e.html

Leipzig, May 4, 2010

1 Formats Characterised by Subspaces

1) Tensor Subspace Representation (Tucker Format)

For $\mathbf{v} \in \mathbf{V} = V^{(1)} \otimes \ldots \otimes V^{(d)}$ there are subspaces $U^{(j)} \subset V^{(j)}$ of (possibly smaller) dimension dim $U^{(j)} = r_j$ with

$$\mathbf{u} \in \mathbf{U} = U^{(1)} \otimes U^{(2)} \otimes \ldots \otimes U^{(d)}$$

Numerical realisation: $U^{(j)} = span\{b_1^{(j)}, \dots, b_{r_j}^{(j)}\}$ leads to

$$\mathbf{u} = \sum_{1 \le \ell_1 \le r_1} \cdots \sum_{1 \le \ell_d \le r_d} a_{\ell_1, \dots, \ell_d} \ b_{\ell_1}^{(1)} \otimes \dots \otimes b_{\ell_d}^{(d)}.$$

Format: $\mathcal{T}_{\mathbf{r}} := \left\{ \mathbf{u} \in U^{(1)} \otimes \dots \otimes U^{(d)} : \dim U^{(j)} = r_j \right\}$

2) Hierarchical Tensor Format

Explanation for the example d = 4, $\mathbf{V} = V^{(1)} \otimes V^{(2)} \otimes V^{(3)} \otimes V^{(4)}$

dim
$$U^{(lpha)}=r_{lpha}$$
 for $lpha=\left(1+2
ight),$ $\left(3+4
ight)$

dim
$$U^{(\alpha)} = r_{\alpha}$$
 for $\alpha = (1 - 4)$
 $\mathbf{v} \in U^{(1-4)}$

Format: $\mathcal{H}_{\mathbf{r}}$

3) TT Format

 $\rho_j:=\dim U_{\{1,\dots,j\}}$

Format: \mathbb{T}_{ρ}

Questions:

A) Given $\mathbf{v} \in a \bigotimes_{j=1}^{d} V_j$, what are the subspaces $U_j \subset V_j$ with $\mathbf{v} \in a \bigotimes_{j=1}^{d} U_j$? What are the minimal subspaces $\to U_{j,\min}(\mathbf{v})$.

How does $U_{j,\min}(\mathbf{v})$ depend on \mathbf{v} ? In particular, dim $U_{j,\min}(\mathbf{v})$?

B) Best approximation problem: Given $\mathbf{v} \in \bigotimes_{j=1}^{d} V_j$ and some norm $\|\cdot\|$, is there some $\mathbf{u} \in \mathcal{T}_{\mathbf{r}}$ (or $\in \mathcal{H}_{\mathbf{r}}$ or $\in \mathbb{T}_{\mathbf{r}}$) such that

$$\|\mathbf{v} - \mathbf{u}\| = \inf_{\mathbf{w} \in \mathcal{T}_{\mathbf{r}}} \|\mathbf{v} - \mathbf{w}\|$$
?

Case of dim $V_j = \infty$ included!

2 Minimal Subspaces of a Tensor

General Remarks

REMARK 1.1. For $\mathbf{v} \in a \bigotimes_{j=1}^{d} V_j$ there are always finite dimensional subspaces $U_j \subset V_j$ satisfying $\mathbf{v} \in a \bigotimes_{j=1}^{d} U_j$.

PROOF: By definition of the algebraic tensor space, $\mathbf{v} \in a \bigotimes_{j=1}^{d} V_j$ is a *finite* linear combination

$$\mathbf{v} = \sum_{\nu=1}^{n} \bigotimes_{j=1}^{d} v_{\nu}^{(j)}$$

for some $n \in \mathbb{N}_0$ and $v_{\nu}^{(j)} \in V_j$. Define

$$U_j := \operatorname{span}\{v_{\nu}^{(j)} : 1 \le \nu \le n\} \quad \text{for } 1 \le j \le d.$$

Then $\mathbf{v} \in \mathbf{U} := a \bigotimes_{j=1}^{d} U_j$ with dim $(U_j) \leq n$.

The next, well-known result is formulated for d = 2.

LEMMA 1.2. For any tensor $\mathbf{x} \in V \otimes_a W$ there is an $r \in \mathbb{N}_0$ and a representation

$$\mathbf{x} = \sum_{i=1}^r v_i \otimes w_i$$

with linearly independent vectors $\{v_i : 1 \leq i \leq r\} \subset V$ and $\{w_i : 1 \leq i \leq r\} \subset W$.

PROOF. Take any representation $\mathbf{x} = \sum_{i=1}^{n} v_i \otimes w_i$. If, e.g., the $\{v_i : 1 \le i \le n\}$ are not linearly independent, one v_i can be expressed by the others. Without loss of generality assume $v_n = \sum_{i=1}^{n-1} \alpha_i v_i$. Then

$$v_n \otimes w_n = \left(\sum_{i=1}^{n-1} \alpha_i v_i\right) \otimes w_n = \sum_{i=1}^{n-1} v_i \otimes (\alpha_i w_n)$$

shows that x possesses a representation with only n-1 terms:

$$\mathbf{x} = \left(\sum_{i=1}^{n-1} v_i \otimes w_i\right) + v_n \otimes w_n = \sum_{i=1}^{n-1} v_i \otimes w'_i \quad \text{with} \quad w'_i := w_i + \alpha_i w_n.$$

Since each reduction step decreases the number of terms by one, this process terminates, i.e., we obtain a representation with linearly independent v_i and w_i .

DEFINITION 1.3. For a tensor $\mathbf{v} \in V_1 \otimes_a V_2$, the *minimal subspaces* are denoted by $U_{1,\min}(\mathbf{v})$ and $U_{2,\min}(\mathbf{v})$ defined by the properties

$$\mathbf{v} \in U_{1,\min}(\mathbf{v}) \otimes_a U_{1,\min}(\mathbf{v}), \\ \mathbf{v} \in U_1 \otimes_a U_2 \Rightarrow U_{1,\min}(\mathbf{v}) \subset U_1, \ U_{1,\min}(\mathbf{v}) \subset U_2.$$

To ensure the existence of minimal subspaces U_1, U_2 with $\mathbf{v} \in U_1 \otimes U_2$, we need a *lattice structure*, which is subject of the next lemma.

Then:

Consider the family $\{(U_{1,\alpha}, U_{2,\alpha}) : \alpha \in \mathcal{F}\}$ of all subspaces such that $\mathbf{v} \in U_{1,\alpha} \otimes_a U_{2,\alpha}$ for all $\alpha \in \mathcal{F}$ and set

$$U_{j,\min}(\mathbf{v}) := \bigcap_{\alpha \in \mathcal{F}} U_{j,\alpha}.$$

LEMMA 1.4. $\mathbf{v} \in X_1 \otimes_a X_2$ and $\mathbf{v} \in Y_1 \otimes_a Y_2 \Rightarrow \mathbf{v} \in (X_1 \cap Y_1) \otimes_a (X_2 \cap Y_2)$.

PROOF. By assumption, \mathbf{v} has the two representations

$$\mathbf{v} = \sum_{\nu=1}^{n_x} x_{\nu}^{(1)} \otimes x_{\nu}^{(2)} = \sum_{\nu=1}^{n_y} y_{\nu}^{(1)} \otimes y_{\nu}^{(2)} \quad \text{with } x_{\nu}^{(i)} \in X_i, \ y_{\nu}^{(i)} \in Y_i.$$

Thanks to Lemma 1.2, $\{x_{\nu}^{(1)}\}$, $\{x_{\nu}^{(2)}\}$, $\{y_{\nu}^{(1)}\}$, $\{y_{\nu}^{(2)}\}$ may be assumed to be linearly independent.

Dual basis $\xi_{\mu}^{(2)} \in X_2$ of $\{x_{\nu}^{(2)}\}$: $\xi_{\mu}^{(2)}(x_{\nu}^{(2)}) = \delta_{\nu\mu}$. Application of $id \otimes \xi_{\mu}^{(2)}$ to the first representation: $(id \otimes \xi_{\mu}^{(2)})(\mathbf{v}) = x_{\mu}^{(1)}$, application to second representation: $\sum_{\nu=1}^{n_y} \xi_{\mu}^{(2)}(y_{\nu}^{(2)}) y_{\nu}^{(1)}$ $\Rightarrow x_{\mu}^{(1)} = \sum_{\nu=1}^{n_y} \xi_{\mu}^{(2)}(y_{\nu}^{(2)}) y_{\nu}^{(1)} \Rightarrow x_{\nu}^{(1)} \in Y_1$. Dual basis $\xi_{\mu}^{(1)}$ of $\{x_{\nu}^{(1)}\}$ and application of $\xi_{\mu}^{(1)} \otimes id$ to \mathbf{v} proves $x_{\nu}^{(2)} \in Y_2$. Hence $x_{\nu}^{(i)} \in X_i \cap Y_i$ is shown, i.e., $\mathbf{v} \in (X_1 \cap Y_1) \otimes_a (X_2 \cap Y_2)$. LEMMA 1.5. Assume $\mathbf{v} = \sum_{i=1}^{r} v_i \otimes w_i$ with linearly independent $\{v_i : 1 \le i \le r\}$ and $\{w_i : 1 \le i \le r\}$. Then they span the minimal spaces:

 $U_{1,\min}(\mathbf{v}) = \operatorname{span} \{v_{\nu} : 1 \le \nu \le r\} \quad \text{and} \quad U_{2,\min}(\mathbf{v}) = \operatorname{span} \{w_{\nu} : 1 \le \nu \le r\}.$ In particular, dim $(U_{1,\min}(\mathbf{v})) = \dim(U_{2,\min}(\mathbf{v})) = r.$

PROPOSITION 1.6. Let $\mathbf{v} \in V_1 \otimes_a V_2$. The minimal subspaces $U_{1,\min}(\mathbf{v})$ and $U_{2,\min}(\mathbf{v})$ are characterised by

$$U_{1,\min}(\mathbf{v}) = \left\{ (id \otimes \lambda) (\mathbf{v}) : \lambda \in V'_2 \right\},\ U_{2,\min}(\mathbf{v}) = \left\{ (\lambda \otimes id) (\mathbf{v}) : \lambda \in V'_1 \right\}.$$

$$(id\otimes\lambda)\left(\sum_{i=1}^r v_i\otimes w_i
ight)=\sum_{i=1}^r (id\otimes\lambda)\left(v_i\otimes w_i
ight)=\sum_{i=1}^r \lambda\left(w_i
ight)\cdot v_i.$$

Matrix interpretation ($\mathbf{v} = M$):

$$U_{1,\min}(\mathbf{v}) = range(M), \quad U_{2,\min}(\mathbf{v}) = range(M^{\mathsf{T}}).$$

COROLLARY 1.7 (a) Once $U_{1,\min}(\mathbf{v})$ and $U_{2,\min}(\mathbf{v})$ are given, one may select any basis $\{v_i : 1 \leq i \leq n\}$ of $U_{1,\min}(\mathbf{v})$ and finds a representation $\mathbf{v} = \sum_{i=1}^{r} v_i \otimes w_i$ with some basis $\{w_i\}$ of $U_{2,\min}(\mathbf{v})$. Vice versa, one may select a basis $\{w_i : 1 \leq i \leq n\}$ of $U_{2,\min}(\mathbf{v})$, and obtains $\mathbf{v} = \sum_{i=1}^{r} v_i \otimes w_i$ with some other basis of $U_{1,\min}(\mathbf{v})$.

(b) If we fix a basis $\{w_{\nu} : 1 \leq \nu \leq n\}$ of a subspace U_2 , there are mappings $\{\Psi_{\nu} : 1 \leq \nu \leq n\} \subset L(V_1 \otimes U_2, V_1)$ such that

$$\mathbf{w} = \sum_{
u=1}^n \Psi_
u(\mathbf{w}) \otimes w_
u$$
 for all $\mathbf{w} \in V_1 \otimes U_2$

PROOF of (b). Let $\mathbf{w} = \sum_{\nu=1}^{n} v_{\nu} \otimes w_{\nu}$. Choose a dual basis $\{\psi_{\nu}\}$ to w_{ν} . i.e., $\psi_{\nu}(w_{\mu}) = \delta_{\nu\mu}$. Set $\Psi_{\nu} := id \otimes \psi_{\nu} \Rightarrow$

$$\Psi_{\nu}(\mathbf{w}) = \sum_{i=1}^{n} (id \otimes \psi_{\nu}) (v_i \otimes w_i) = \sum_{i=1}^{n} v_i \otimes \psi_{\nu}(w_i) = v_{\nu}.$$

Definition in the General Case

Now $d \ge 3$. By Remark 1.1 we may assume $\mathbf{v} \in \mathbf{U} := \bigotimes_{j=1}^{d} U_j$ with finite dimensional subspaces $U_j \subset V_j$. The lattice structure from Lemma 1.4 generalises to higher order:

LEMMA 1.8.
$$\left(a \bigotimes_{j=1}^{d} X_{j}\right) \cap \left(a \bigotimes_{j=1}^{d} Y_{j}\right) = a \bigotimes_{j=1}^{d} \left(X_{j} \cap Y_{j}\right).$$

PROOF. Start of the induction at d = 2 by Lemma 1.4. Assume assertion for d-1 and write $a \bigotimes_{j=1}^{d} X_j$ as $X_1 \bigotimes X_{[1]}$ with $X_{[1]} := a \bigotimes_{j=2}^{d} X_j$. Similarly, use $a \bigotimes_{j=1}^{d} Y_j = Y_1 \bigotimes Y_{[1]}$. Lemma 1.4 states that $\mathbf{v} \in (X_1 \cap Y_1) \otimes (X_{[1]} \cap Y_{[1]})$. By induction hypothesis, $X_{[1]} \cap Y_{[1]} = a \bigotimes_{j=2}^{d} (X_j \cap Y_j)$ is valid proving the assertion.

The minimal subspaces $U_{j,\min}(\mathbf{v})$ are given by the intersection of all U_j satisfying $\mathbf{v} \in a \bigotimes_{j=1}^d U_j$.

For
$$\alpha = \bigotimes_{k \neq j} \alpha_k \in a \bigotimes_{k \neq j} V'_k$$
 define $\alpha : \mathbf{V} \to V_j$ by
 $\alpha(\mathbf{v}) := \left(\alpha_1 \otimes \ldots \otimes \alpha_{j-1} \otimes id \otimes \alpha_{j+1} \otimes \ldots \otimes \alpha_d\right)(\mathbf{v}),$
 $\alpha\left(\bigotimes_{k=1}^d v^{(k)}\right) := \left(\prod_{k \neq j} \alpha_k(v^{(k)})\right) \cdot v^{(j)}.$

LEMMA 1.9. Let $\mathbf{v} \in \mathbf{V} = a \bigotimes_{j=1}^{d} V_j$. The two spaces

$$egin{aligned} U_j^I(\mathbf{v}) &:= \left\{ lpha(\mathbf{v}): \ lpha \in a \bigotimes_{k
eq j} V_k'
ight\}, \ U_j^{II}(\mathbf{v}) &:= \left\{ lpha(\mathbf{v}): \ lpha \in (a \bigotimes_{k
eq j} V_k)'
ight\} \end{aligned}$$

coincide.

PROOF. Mappings α are applied to $\mathbf{v} \in \mathbf{U} := \bigotimes_{j=1}^{d} U_j$, i.e., one may replace $\alpha \in a \bigotimes_{k \neq j} V'_k$ by $\alpha \in a \bigotimes_{k \neq j} U'_k$ and $\alpha \in (a \bigotimes_{k \neq j} V_k)'$ by $\alpha \in (a \bigotimes_{k \neq j} U_k)'$. Since dim $(U_k) < \infty$, $a \bigotimes_{k \neq j} U'_k = (a \bigotimes_{k \neq j} U_k)'$.

Matricisation:
$$\mathbf{v} \in V_j \otimes V_{[j]}$$
 with $V_{[j]} := a \otimes_{k \neq j} V_k$.
 $\Rightarrow \mathbf{v} \in U_{j,\min}(\mathbf{v}) \otimes V_{[j]}$ with $U_{j,\min} = \left\{ (id \otimes \lambda)(\mathbf{v}) : \lambda \in (V_{[j]})' \right\} = U_j^{II}(\mathbf{v})$

THEOREM 1.10. For any $\mathbf{v} \in \mathbf{V} = a \bigotimes_{j=1}^{d} V_j$ there exist minimal subspaces $U_{j,\min}(\mathbf{v})$ $(1 \le j \le d)$. An algebraic characterisation of $U_{j,\min}(\mathbf{v})$ is

$$U_{j,\min}(\mathbf{v}) = \operatorname{span} \left\{ \left(\alpha_1 \otimes \ldots \otimes \alpha_{j-1} \otimes id \otimes \alpha_{j+1} \otimes \ldots \otimes \alpha_d \right) (\mathbf{v}) : \alpha_k \in V'_k \text{ for } k \neq j \right\}$$
or equivalently

$$U_{j,\min}(\mathbf{v}) = \left\{ lpha(\mathbf{v}): \ lpha \in a \bigotimes_{k \neq j} V'_k
ight\}.$$

3 Topological Tensor Space

 $(V_j, \|\cdot\|_j)$ are Banach spaces. The tensor space $\mathbf{V} := \|\cdot\| \bigotimes_{j=1}^d V_j$ is now the completion of the algebraic tensor space $a \bigotimes_{j=1}^d V_j$ w.r.t. a norm $\|\cdot\|$. Notations: V_i^* dual spaces with dual norm $\|\cdot\|_i^*$.

DEFINITION 2.1. For $\mathbf{v} \in \mathbf{V} = a \bigotimes_{j=1}^{d} V_j$ define $\|\cdot\|_{\vee}$ by

$$\|\mathbf{v}\|_{\vee} := \sup\left\{\frac{\left|\left(\varphi^{(1)}\otimes\varphi^{(2)}\otimes\ldots\otimes\varphi^{(d)}\right)(\mathbf{v})\right|}{\prod_{j=1}^{d}\|\varphi^{(j)}\|_{j}^{*}}: \mathbf{0}\neq\varphi^{(j)}\in V_{j}^{*}, \mathbf{1}\leq j\leq d\right\}.$$

(injective norm [Grothdieck 1953]).

THEOREM 2.2. Any norm $\|\cdot\|$ on $_a \bigotimes_{j=1}^d V_j$, for which

$$\bigotimes_{j=1}^{d} : V_1 \times \ldots \times V_d \to a \bigotimes_{j=1}^{d} V_j \text{ and}$$
$$\bigotimes_{j=1}^{d} : V_1^* \times \ldots \times V_d^* \to a \bigotimes_{j=1}^{d} V_j^*$$

are continuous, cannot be weaker than $\left\|\cdot\right\|_{\vee},$ i.e.,

$$\|\cdot\| \gtrsim \|\cdot\|_{\vee}$$
. (norm)

LEMMA 2.3. For fixed $j \in \{1, \ldots, d\}$, $\varphi = \bigotimes_{k \neq j} v_k^* \in a \bigotimes_{k \neq j} V_k^*$ maps $\left(a \bigotimes_{k=1}^d V_k, \|\cdot\|_{\vee}\right)$ into V_j via

$$\varphi\left(\bigotimes_{k=1}^{d} v^{(k)}\right) := \left(\prod_{k \in \{1, \dots, d\} \setminus \{j\}} v_k^*(v^{(k)})\right) \cdot v^{(j)}.$$

The mapping φ is denoted by $\varphi = v_1^* \otimes \ldots \otimes v_{j-1}^* \otimes id \otimes v_{j+1}^* \otimes \ldots \otimes v_d^*$. Then φ is continuous, i.e., $\varphi \in \mathcal{L}\left(\vee \bigotimes_{k=1}^d V_k, V_j\right)$. Its norm is

$$\|\varphi\|_{V_j \leftarrow \vee \bigotimes_{k=1}^d V_k} = \prod_{k \in \{1, \dots, d\} \setminus \{j\}} \|v_k^*\|_k^*$$

PROOF. Let $v_j^* \in V_j^*$ with $||v_j^*||_j^* = 1$ and note that the composition $v_j^* \circ \varphi$ equals $\mathbf{v}^* := \bigotimes_{k=1}^d v_k^*$. Hence,

$$\|\varphi(\mathbf{v})\|_j = \max_{\|v_j^*\|_j^* = 1} \left| v_j^*(\varphi(\mathbf{v})) \right| = \max_{\|v_j^*\|_j^* = 1} \left| (v_j^* \circ \varphi)(\mathbf{v}) \right| = \max_{\|v_j^*\|_j^* = 1} \left| \left(\bigotimes_{k=1}^d v_k^*\right)(\mathbf{v}) \right|$$

and

$$\sup_{\|\mathbf{v}\|_{\vee}=1} \left| v_j^*(\varphi(\mathbf{v})) \right| = \sup_{\|\mathbf{v}\|_{\vee}=1} \left| \begin{pmatrix} d \\ \bigotimes_{k=1} v_k^* \end{pmatrix} (\mathbf{v}) \right| = \left\| \bigotimes_{k=1}^d v_k^* \right\|_{\vee}^* = \prod_{k=1}^d \|v_k^*\|^* = \prod_{k \neq j} \|v_k^*\|_k^*.$$

LEMMA 2.4. For $\mathbf{v} \in \mathbf{V} = a \bigotimes_{j=1}^{d} V_j$ define $U_j^{III}(\mathbf{v}) := \left\{ \alpha(\mathbf{v}) : \ \alpha \in a \bigotimes_{k \neq j} V_k^* \right\},$ $U_j^{IV}(\mathbf{v}) := \left\{ \alpha(\mathbf{v}) : \ \alpha \in (\|\cdot\| \bigotimes_{k \neq j} V_k)^* \right\}.$

Then $U_j^{III}(\mathbf{v}) = U_j^{IV}(\mathbf{v}) = U_{j,\min}(\mathbf{v}).$

PROOF. Hahn-Banach

Sequences of Minimal Subspaces

 $\mathbf{V} := \|\cdot\| \bigotimes_{j=1}^d V_j$ Banach tensor space with $\|\cdot\|$ satisfying (norm): $\|\cdot\| \gtrsim \|\cdot\|_{\vee}$.

The following definition $U_{j,\min}(\mathbf{v})$ can also be applied to $\mathbf{v} \in \|\cdot\| \bigotimes_{j=1}^d V_j \setminus a \bigotimes_{j=1}^d V_j$:

$$\begin{split} &U_{j,\min}(\mathbf{v}) \\ &= closure\left(\text{span}\left\{\left(\varphi_{1}\otimes\ldots\otimes\varphi_{j-1}\otimes id\otimes\varphi_{j+1}\otimes\ldots\otimes\varphi_{d}\right)(\mathbf{v}):\varphi_{\nu}\in V_{\nu}^{*}\text{ for }\nu\neq j\right\} \\ &= closure\left\{\varphi(\mathbf{v}): \ \varphi\in a\bigotimes_{k\neq j}V_{k}^{*}\right\} = closure\left\{\varphi(\mathbf{v}): \ \varphi\in\left(\left\|\cdot\right\|\bigotimes_{k\neq j}V_{k}\right)^{*}\right\}. \end{split}$$

By LEMMA 2.3, the involved mappings $\varphi: \mathbf{V} \to V_j$ are continuous.

Note that

▲ for $\mathbf{v} \in a \bigotimes_{j=1}^{d} V_j$ the subspace $U_{j,\min}(\mathbf{v})$ is defined by the minimality condition. Thm 1.10 shows $U_{j,\min}(\mathbf{v}) = \operatorname{span} \left\{ \left(\bigotimes_{k \neq j} \alpha_k \right) (\mathbf{v}) : \alpha_k \in V'_k \right\}$, which for these \mathbf{v} coincides with the definition above.

▲ for $\mathbf{v} \in \|\cdot\| \bigotimes_{j=1}^{d} V_j \setminus a \bigotimes_{j=1}^{d} V_j$ the equation above is a definition. Whether $\mathbf{v} \in \|\cdot\| \bigotimes_{j=1}^{d} U_{j,\min}(\mathbf{v})$ with minimal $U_{j,\min}(\mathbf{v})$ holds, is not yet stated.

A sequence $x_n \in X$ is *weakly convergent*, if $\lim_{n\to\infty} \varphi(x_n)$ exists for all $\varphi \in X^*$. $(x_n)_{n\in\mathbb{N}}$ converges weakly to $x \in X$, if $\lim_{n\to\infty} \varphi(x_n) = \varphi(x)$ for all $\varphi \in X^*$. Notation: $x_n \rightharpoonup x$.

LEMMA 2.5. Assume (norm). Let $\varphi_{[j]} \in a \bigotimes_{k \neq j} V_k^*$ and $\mathbf{v}_n, \mathbf{v} \in \mathbf{V}$ with $\mathbf{v}_n \rightarrow \mathbf{v}$. (a) Then $\varphi_{[j]}(\mathbf{v}_n) \rightarrow \varphi_{[j]}(\mathbf{v})$ in V_j . (b) The estimate

$$\|\varphi_{[j]}(\mathbf{v}-\mathbf{v}_n)\|_{V_j} \leq C \|\mathbf{v}-\mathbf{v}_n\|$$

holds for elementary tensors $\varphi_{[j]} \in a \bigotimes_{k \neq j} V_k^*$ with $\|v_k^*\|^* = 1$, where *C* is the norm constant involved in (Norm).

PROOF. 1) Let $\varphi_{[j]} = \bigotimes_{k \neq j} v_k^* (v_k^* \in V_k^*)$. To prove $\varphi_{[j]}(\mathbf{v}_n) \rightarrow \varphi_{[j]}(\mathbf{v})$ show for all $\varphi_j \in V_j^*$ that $\varphi_j(\varphi_{[j]}(\mathbf{v}_n)) \rightarrow \varphi_j(\varphi_{[j]}(\mathbf{v}))$. The composition $\varphi_j \circ \varphi_{[j]} = \bigotimes_{k=1}^d v_k^*$ belongs to $\bigvee \bigotimes_{k=1}^d V_k^*$ and because of (norm) also to $\mathbf{V}^* = (\|\cdot\| \bigotimes_{k=1}^d V_k)^*$. Hence $\mathbf{v}_n \rightarrow \mathbf{v}$ implies $\varphi_j(\varphi_{[j]}(\mathbf{v}_n)) \rightarrow \varphi_j(\varphi_{[j]}(\mathbf{v}))$ and proves Part (a) for an elementary tensor $\varphi_{[j]}$. The result extends immediately to finite linear combinations $\varphi_{[j]} \in a \bigotimes_{k \neq j} V_k^*$. 2) LEMMA 2.3 proves $\|\varphi_{[j]}(\mathbf{v} - \mathbf{v}_n)\|_{V_j} \leq (\prod_{k \neq j} \|v_k^*\|^*) \|\mathbf{v} - \mathbf{v}_n\|_{\vee}$. Estimate $\|\cdot\|_{\vee} \leq C \|\cdot\|$ shows the inequality of the Lemma. MAIN THEOREM 2.6. Assume (norm). For $\mathbf{v}_n \in a \bigotimes_{j=1}^d V_j$ assume $\mathbf{v}_n \rightharpoonup \mathbf{v} \in \|\cdot\| \bigotimes_{j=1}^d V_j$. Then $\dim U_{j,\min}(\mathbf{v}) \leq \liminf_{n \to \infty} \dim U_{j,\min}(\mathbf{v}_n) \quad \text{ for all } 1 \leq j \leq d.$

Lemma needed for the proof:

LEMMA 2.7. Assume $N \in \mathbb{N}$ and $x_n^{(i)} \to x_{\infty}^{(i)}$ for $1 \leq i \leq N$ with linearly independent $x_{\infty}^{(i)} \in X$. Then there is an n_0 such that for all $n \geq n_0$ the N-tuples $(x_n^{(i)} : 1 \leq i \leq N)$ are linearly independent.

PROOF (L. 2.7). There are functionals $\varphi^{(j)} \in X^*$ $(1 \le j \le N)$ with $\varphi^{(j)}(x_{\infty}^{(i)}) = \delta_{ij}$. Set

$$\Delta_n := \mathsf{det}\left((arphi^{(j)}(x_n^{(i)}))_{i,j=1}^N
ight).$$

 $x_n^{(i)} \rightarrow x_{\infty}^{(i)}$ implies $\varphi^{(j)}(x_n^{(i)}) \rightarrow \varphi^{(j)}(x_{\infty}^{(i)})$. Continuity of det(·) proves $\Delta_n \rightarrow \Delta_{\infty} := \det(\left(\delta_{ij}\right)_{i,j=1}^N) = 1$. Hence, there is an n_0 such that $\Delta_n > 0$ for all $n \ge n_0$, but $\Delta_n > 0$ proves linear independence of $\{x_n^{(i)} : 1 \le i \le N\}$. PROOF (Thm 2.6). Choose a subsequence such that dim $U_{j,\min}(\mathbf{v}_n)$ is weakly increasing. If dim $U_{j,\min}(\mathbf{v}_n) \to \infty$ holds, nothing is to be proved. Therefore, assume that

$$\lim \dim U_{j,\min}(\mathbf{v}_n) = N < \infty.$$

Indirect proof: assume that dim $U_{j,\min}(\mathbf{v}) > N$. Since $\{\varphi(\mathbf{v}) : \varphi \in a \otimes_{k \neq j} V_k^*\}$ is dense in $U_{j,\min}(\mathbf{v}_n)$, there are N+1 linearly independent vectors

$$b^{(i)} = \varphi_{[j]}^{(i)}(\mathbf{v})$$
 with $\varphi_{[j]}^{(i)} \in a \bigotimes_{k \neq j} V_k^*$ for $1 \le i \le N+1$.

By LEMMA 2.5, weak convergence

$$b_n^{(i)} := \varphi_{[j]}^{(i)}(\mathbf{v}_n) \rightharpoonup b^{(i)}$$

holds. By LEMMA 2.7, for large enough n also $(b_n^{(i)} : 1 \leq i \leq N+1)$ is linearly independent. Because of $b_n^{(i)} = \varphi_{[j]}^{(i)}(\mathbf{v}_n) \in U_{j,\min}(\mathbf{v}_n)$, this contradicts dim $U_{j,\min}(\mathbf{v}_n) \leq N$.

Application to Tensor Formats

The formats $\mathcal{T}_{\mathbf{r}}$ (Tucker), $\mathcal{H}_{\mathbf{r}}$ (hierarchical), $\mathbb{T}_{\mathbf{r}}$ (TT) are essentially determined by the dimension r_{α} of the involved subspaces $U_{\alpha} \subset \bigotimes_{k \in \alpha} V_k$.

DEFINITION 2.9. $M \subset X$ is called *weakly closed*, if $x_n \in M$ and $x_n \rightharpoonup x \in X$ imply $x \in M$.

Note that 'weakly closed' is stronger than 'closed', i.e., M weakly closed $\Rightarrow M$ closed.

THEOREM 2.8. Under assumption (norm), the sets T_r , \mathcal{H}_r , \mathbb{T}_r are weakly closed.

PROOF. Let $\mathbf{v}_n \in \mathcal{T}_{\mathbf{r}}$, i.e., there are subspaces $U_{j,n}$ with $\mathbf{v}_n \in \bigotimes_{j=1}^d U_{j,n}$ and dim $U_{j,n} \leq r_j$. Note that $U_{j,\min}(\mathbf{v}_n) \subset U_{j,n}$ with dim $U_{j,\min}(\mathbf{v}_n) \leq r_j$.

If $\mathbf{v}_n \rightarrow \mathbf{v}$, then dim $U_{j,\min}(\mathbf{v}) \leq r_j$ and $\mathbf{v} \in \mathcal{T}_r$ (cf. THEOREM 3.1).

Same argument for $\mathcal{H}_{\mathbf{r}}$, $\mathbb{T}_{\mathbf{r}}$.

Application to Best Approximation

THEOREM 2.10. Let $(X, \|\cdot\|)$ be a reflexive Banach space with a weakly closed subset $\emptyset \neq M \subset X$. Then for any $x \in X$ there exists a best approximation $v \in M$ with

 $||x - v|| = \inf\{||x - w|| : w \in M\}.$

LEMMA 2.11. If $x_n \rightharpoonup x$, then $||x|| \leq \liminf_{n \to \infty} ||x_n||$.

LEMMA 2.12. If X is a reflexive Banach space, any bounded sequence $x_n \in X$ has a subsequence x_{n_i} converging weakly to some $x \in X$.

PROOF of Thm 2.10. Choose $w_n \in M$ with $||x-w_n|| \to \inf\{||x-w|| : w \in M\}$. Since $(w_n)_{n \in \mathbb{N}}$ is a bounded sequence in X, LEMMA 2.12 ensures the existence of a subsequence $w_{n_i} \to v \in X$. v belongs to M because $w_{n_i} \in M$ and M is weakly closed. Since also $x - w_{n_i} \to x - v$, LEMMA 2.11 shows $||x-v|| \leq \liminf ||x-w_{n_i}|| \leq \inf\{||x-w|| : w \in M\}$.

Conclusion for $M \in \{\mathcal{T}_{\mathbf{r}}, \mathcal{H}_{\mathbf{r}}, \mathbb{T}_{\mathbf{r}}\}$:

COROLLARY 2.13: If (norm), best approximations in the formats T_r , \mathcal{H}_r , \mathbb{T}_r exist.

4 Minimal Subspaces in Topological Tensor Spaces

Where is the Problem?

For a general $\mathbf{v} \in \|\cdot\| \bigotimes_{j=1}^d V_j$ the subspace $U_{j,\min}(\mathbf{v})$ is defined. Set

$$\mathbf{U}(\mathbf{v}) := \mathop{\|\cdot\|}\limits_{j=1} \bigotimes_{j=1}^{d} U_{j,\mathsf{min}}(\mathbf{v}) \ .$$

One expects the statement

 $\mathbf{v} \in \mathbf{U}(\mathbf{v}).$

We shall prove this statement in three different situations.

A) dim $U_{j,\min}(\mathbf{v}) < \infty$, B) Hilbert space setting, C) convergence $\mathbf{v}_n \rightarrow \mathbf{v}$ (tensorrank(\mathbf{v}_n) $\leq n$) fast enough.

Note that the definition of minimal subspaces via the lattice property is not obvious:

 $\mathbf{v} \in closure\left(X_1 \otimes_a X_2\right) \cap closure\left(Y_1 \otimes_a Y_2\right) \Rightarrow \mathbf{v} \in closure\left((X_1 \cap Y_1) \otimes_a (X_2 \cap Y_2)\right)$

THEOREM 3.1. Assume (norm), $\mathbf{v} \in \mathbf{V} = \|\cdot\| \bigotimes_{j=1}^{d} V_j$ with $\dim(U_{j,\min}(\mathbf{v})) < \infty$. Then \mathbf{v} belongs to the *algebraic* tensor space $\mathbf{U} = a \bigotimes_{j=1}^{d} U_{j,\min}(\mathbf{v})$.

LEMMA of Auerbach 3.2. For any *n*-dimensional subspace of a Banach space X, there exists a basis $\{x_{\nu} : 1 \leq \nu \leq n\}$ and a corresponding dual basis $\{\varphi_{\nu} : 1 \leq \nu \leq n\}$ such that $||x_{\nu}|| = ||\varphi_{\nu}||^* = 1$ $(1 \leq \nu \leq n)$.

THEOREM 3.3. $Y \subset X$ be subspace of a Banach space X with dim $(Y) \leq n$. Then there exists a projection $\Phi \in \mathcal{L}(X, X)$ onto Y such that

$$\|\Phi\|_{X\leftarrow X} \le n^{1/2}.$$

The bound is sharp for general Banach spaces, but can be improved to $\|\Phi\|_{X \leftarrow X} \leq n^{1/2-1/p}$ for $X = L^p$.

THEOREM 3.4. Let $\|\cdot\|$ be a crossnorm. Assume that $\mathbf{v} \in \mathbf{V} = \|\cdot\| \bigotimes_{j=1}^{d} V_j$ is the limit of $\mathbf{v}_n = \sum_{i=1}^{n} \bigotimes_{j=1}^{d} v_{i,n}^{(j)}$ with the speed

$$\|\mathbf{v}_n - \mathbf{v}\| \le o(n^{-3/2})$$

Then $\mathbf{v} \in \mathbf{U} = \|\cdot\| \bigotimes_{j=1}^{d} U_{j,\min}(\mathbf{v})$, i.e., $\mathbf{v} = \lim \mathbf{u}_n$ with $\mathbf{u}_n \in a \bigotimes_{j=1}^{d} U_{j,\min}(\mathbf{v})$.

PROOF. Consider $\mathbf{V} = V_1 \otimes V_{[1]}$. $\mathbf{v}_n \in \mathbf{V}$ has a representation in $U_{1,\min}(\mathbf{v}_n) \otimes U_{[1],\min}(\mathbf{v}_n)$ with $r := \dim(U_{1,\min}(\mathbf{v}_n)) = \dim U_{[1],\min}(\mathbf{v}_n) \leq n$. Renaming n by r, we obtain the representation $\mathbf{v}_n = \sum_{i=1}^n v_i^{(1)} \otimes v_i^{[1]}$. According to COROL-LARY 1.7, we can fix a basis $\{v_i^{[1]}\}$ and recover $\mathbf{v}_n = \sum_{i=1}^n \psi_i(\mathbf{v}_n) \otimes v_i^{[1]}$ from the dual basis $\{\psi_i\}$. Define

$$\mathbf{u}_n^I := \sum_{i=1}^n \psi_i(\mathbf{v}) \otimes v_i^{[1]} \in U_{1,\min}(\mathbf{v}) \otimes_a V_{[1]}.$$

Due to COROLLARY 1.7, the choice of the basis $\{v_i^{[1]}\}\$ is arbitrary. Choosing the basis according to Auerbach's LEMMA 3.2, we can estimate

$$\begin{aligned} \|\mathbf{u}_n^I - \mathbf{v}_n\| &= \left\|\sum_{i=1}^n \left(\psi_i(\mathbf{v}) - \psi_i(\mathbf{v}_n)\right) \otimes v_i^{[1]}\right\| \leq \sum_{i=1}^n \|\psi_i(\mathbf{v} - \mathbf{v}_n)\| \|v_i^{[1]}\| \\ &\leq \left(\sum_{i=1}^n \|\psi_i\|^* \|v_i^{[1]}\|\right) \|\mathbf{v} - \mathbf{v}_n\| \underset{\mathsf{Auerbach}}{\leq} n\|\mathbf{v} - \mathbf{v}_n\|. \end{aligned}$$

Analogously, we can choose the basis $(v_i^{(1)})$ according to Auerbach's LEMMA 3.2 and define $\mathbf{u}_n^{II} := \sum_{i=1}^n v_i^{(1)} \otimes \psi_i(\mathbf{v}) \in V_1 \otimes_a U_{[1],\min}(\mathbf{v})$ with

$$\|\mathbf{u}_n^{II} - \mathbf{v}_n\| \le n \|\mathbf{v} - \mathbf{v}_n\|.$$

$$\|\mathbf{u}_n^I - \mathbf{v}_n\| \le n \|\mathbf{v} - \mathbf{v}_n\|$$
 and $\|\mathbf{u}_n^{II} - \mathbf{v}_n\| \le n \|\mathbf{v} - \mathbf{v}_n\|.$

We choose the projection Φ onto the subspace $U_{[1],\min}(\mathbf{v})$ of dimension n from THEOREM 3.3 and define

$$\mathbf{u}_n := (id \otimes \Phi) \, \mathbf{u}_n^I \in U_{1,\min}(\mathbf{v}) \otimes_a U_{[1],\min}(\mathbf{v}) \subset a \bigotimes_{j=1}^d U_{j,\min}(\mathbf{v}) \, .$$

THEOREM 3.3 implies the estimates

$$\begin{split} \| \left(id \otimes \Phi \right) \mathbf{v}_n - \mathbf{u}_n^{II} \| &= \| \left(id \otimes \Phi \right) \left(\mathbf{v}_n - \mathbf{u}_n^{II} \right) \| \leq n^{1/2} \| \mathbf{v}_n - \mathbf{u}_n^{II} \| \leq n^{3/2} \| \mathbf{v} - \mathbf{v}_n \|, \\ \| \mathbf{u}_n - \left(id \otimes \Phi \right) \mathbf{v}_n \| &= \| \left(id \otimes \Phi \right) \left(\mathbf{u}_n^I - \mathbf{v}_n \right) \| \leq n^{1/2} \| \mathbf{u}_n^I - \mathbf{v}_n \| \leq n^{3/2} \| \mathbf{v} - \mathbf{v}_n \|. \end{split}$$

Altogether we get the estimate

$$egin{aligned} \|\mathbf{u}_n-\mathbf{v}\| &= \|\left(\mathbf{u}_n-(id\otimes \mathbf{\Phi})\,\mathbf{v}_n
ight) + \left((id\otimes \mathbf{\Phi})\,\mathbf{v}_n-\mathbf{u}_n^{II}
ight) + \left(\mathbf{u}_n^{II}-\mathbf{v}_n
ight) + \left(\mathbf{v}_n-\mathbf{v}
ight) \| \ &\leq \left(2n^{3/2}+n+1
ight)\|\mathbf{v}-\mathbf{v}_n\|. \end{aligned}$$

The assumption $\|\mathbf{v} - \mathbf{v}_n\| \leq o(n^{-3/2})$ implies $\|\mathbf{u}_n - \mathbf{v}\| \to 0$.

THEOREM 3.5. V_j and V Hilbert spaces. Then for all $\mathbf{v} \in \mathbf{V}$, $\mathbf{v} \in \|\cdot\| \bigotimes_{j=1}^d U_{j,\min}(\mathbf{v})$.

PROOF. The orthogonal decomposition $V_j = U_{j,\min}(\mathbf{v}) + U_{j,\min}^{\perp}(\mathbf{v})$ defines the orthogonal projection P_j onto $U_{j,\min}(\mathbf{v})$. Then $\mathbf{P} := \bigotimes_{j=1}^d P_j$ is the projection of \mathbf{V} onto $\mathbf{U} :=_{\|\cdot\|} \bigotimes_{j=1}^d U_{j,\min}(\mathbf{v})$. It is easy to verify that $w_j \in U_{j,\min}^{\perp}(\mathbf{v})$ leads to $(id \otimes \ldots \otimes w_j \otimes \ldots \otimes id)(\mathbf{v}) = \mathbf{0}$ and to $(id \otimes \ldots \otimes P_j \otimes \ldots \otimes id)(\mathbf{v}) = \mathbf{v}$. Since $\prod_{j=1}^d (id \otimes \ldots \otimes P_j \otimes \ldots \otimes id) = \mathbf{P}$, the equation $\mathbf{P}\mathbf{v} = \mathbf{v}$ shows $\mathbf{v} \in \mathbf{U}$.

To make the last conclusion more explicit, consider a sequence

$$\mathbf{v}_n = \sum_{i=1}^{m(n)} \bigotimes_{j=1}^d v_{i,n}^{(j)} \in {}_a \bigotimes_{j=1}^d V_j \quad \text{with} \quad v_{i,n}^{(j)} \in V_j \quad \text{and} \quad \|\mathbf{v} - \mathbf{v}_n\| \to \mathbf{0}.$$

Set $\mathbf{u}_n := \mathbf{P}\mathbf{v}_n = \sum_{i=1}^{m(n)} \bigotimes_{j=1}^d P_j v_{i,n}^{(j)} \in a \bigotimes_{j=1}^d U_{j,\min}(\mathbf{v})$. Since $\mathbf{P}\mathbf{v} = \mathbf{v}$, one obtains the estimate $\|\mathbf{v} - \mathbf{u}_n\| = \|\mathbf{v} - \mathbf{P}\mathbf{v}_n\| = \|\mathbf{P}(\mathbf{v} - \mathbf{v}_n)\| \le \|\mathbf{v} - \mathbf{v}_n\| \to 0$, i.e., there is a sequence in $a \bigotimes_{j=1}^d U_{j,\min}(\mathbf{v})$ which converges to \mathbf{v} .

5 Intersection Tensor Spaces

Problem: For spaces like $C^1(I \times J) = C^1(I) \otimes_{\|\cdot\|} C^1(J)$ or $H^1(I \times J) = H^1(I) \otimes_{\|\cdot\|} H^1(J)$, the tensor product of the dual spaces is not continuous and the injective norm is not bounded.

In the following, the Sobolev space H^1 is taken as example.

Algebraic Intersections Spaces

For $I_j \subset \mathbb{R}$ set $\mathbf{I} := I_1 \times ... \times I_d$. Two possibilities to define $H^1(\mathbf{I})$:

$$H^{1}(\mathbf{I}) = closure(_{a} \bigotimes_{j=1}^{d} H^{1}(I_{j})),$$

$$H^{1}(\mathbf{I}) = closure(H^{1}(I_{1}) \otimes_{a} L^{2}(I_{2}) \otimes_{a} \dots \otimes_{a} L^{2}(I_{d})))$$

$$\cap closure(L^{2}(I_{1}) \otimes_{a} H^{1}(I_{2}) \otimes_{a} \dots \otimes_{a} L^{2}(I_{d})) \cap \dots$$

Standard definition of the induced scalar product would give $H^{1}_{mix}(\mathbf{I})$.

An algebraic tensor ${\bf v}$ leads to

$$U_{j,\min}(\mathbf{v}) \subset H^1(I_j), \quad \mathbf{v} \in \mathbf{U} := a \bigotimes_{j=1}^d U_{j,\min}(\mathbf{v}) \subset a \bigotimes_{j=1}^d H^1(I_j) \subset H^1_{\min}(\mathbf{I}).$$

Topological Intersections Spaces

$$U_{j,\min}(\mathbf{v}) = closure\left\{ \varphi(\mathbf{v}): \ \varphi \in a \bigotimes_{k \neq j} L^2(I_k) \right\}.$$

Condition (norm) becomes

$$\|\cdot\|_{\vee(L^{2}(I_{1}),...,L^{2}(I_{j-1}),H^{1}(I_{j}),L^{2}(I_{j+1}),...,L^{2}(I_{d}))} \lesssim \|\cdot\|_{H^{1}(\mathbf{I})} \quad \text{for all } 1 \leq j \leq d$$

(of course satisfied for $H^{1}(\mathbf{I})$).

Then analogous conclusions.