Eigenvalue solvers based on TT and QTT formats

Olga Lebedeva
Institute of Numerical Mathematics, Russian Academy of Sciences

May 3, 2010

Problem statement

We consider a standard partial eigenproblem

$$
\begin{equation*}
M X=X \wedge \tag{1}
\end{equation*}
$$

for a symmetric positive-definite matrix $M=M^{T}>0$.
We wish to approximate $k=5 \ldots 30$ lowest eigenpairs $\left(X \in \mathbb{R}^{n \times k}, \Lambda\right.$ is a diagonal matrix $)$.

The matrix and its eigenvectors are supposed to posses an approximate low-parametric structure based on the QTT-decomposition.

QTT-format

Let $n=2^{d}$. For a vector

- Separate indexes: replace a "long" index $i=1 \ldots 2^{d}$ with a set of "short" indexes $i_{1}, \ldots, i_{d}=1,2$
- Apply the TT-approximation

$$
x_{i_{1}, \ldots, i_{d}} \approx \sum_{\alpha_{1}, \ldots, \alpha_{d-1}}^{r_{1}, \ldots, r_{d-1}} g_{1}\left(i_{1}, \alpha_{1}\right) g_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) \ldots g_{d-1}\left(\alpha_{d-2}, i_{d-1}, \alpha_{d-1}\right) g_{d}\left(\alpha_{d-1}, i_{d}\right)
$$

The same way for a matrix

$$
M \approx \sum_{\alpha_{1}, \ldots, \alpha_{d-1}}^{R_{1}, \ldots, R_{d-1}} G_{1}\left(i_{1}, j_{1}, \alpha_{1}\right) G_{2}\left(\alpha_{1}, i_{2}, j_{2}, \alpha_{2}\right) \ldots G_{d}\left(\alpha_{d-1}, i_{d}, j_{d}\right)
$$

If all mode ranks r_{i} are bounded the required memory is $O(\log n)$!

Required linear algebra operations

TT-Toolbox http://spring.inm.ras.ru/osel

- Matrix-by-vector multiplication

$$
r_{i}(M x)=R_{i}(M) r_{i}(x)
$$

- Linear combinations of vectors

$$
r_{i}(\alpha x+\beta y)=r_{i}(x)+r_{i}(y)
$$

- Scalar multiplication of vectors.
+ Run-time $O(\log (n))$
+ QTT-format remains
- Ranks grow!

Compression procedures

For a given vector x in QTT-format to obtain a QTT-approximation with smaller mode ranks.

- Rank minimization with a fixed tolerance

$$
\left\|x-P_{\varepsilon} x\right\|<\varepsilon\|x\|
$$

- Strict boundaries for mode ranks

$$
r_{i}\left(P_{r} x\right) \leqslant r_{\max }, i=1, \ldots, d-1
$$

- Combination

$$
P_{r \varepsilon} x=\left\{\begin{array}{l}
P_{\varepsilon} x, r_{i}\left(P_{\varepsilon} x\right) \leqslant r_{\max } \forall i \\
P_{r} x, r_{q}\left(P_{\varepsilon} x\right)>r_{\max }
\end{array}\right.
$$

Also,

- Krylov-based compression procedures for $M x$;
- ALS-based compression procedures for $\sum_{i} x_{i}$.

TT-Toolbox http://spring.inm.ras.ru/osel

The modified iteration method with structure

Suppose we have an iterative method

$$
\begin{equation*}
x_{i+1}=F\left(x_{i}\right),\left\|x_{0}\right\|=1,\left(x_{0}, u\right) \neq 0 \tag{2}
\end{equation*}
$$

with linear covergence rate

$$
\left\|x_{i+1}-u\right\| \leqslant \gamma\left\|x_{i}-u\right\|(\gamma<1)
$$

We will replace all vectors by their normalized QTT-approximations:

$$
\begin{equation*}
\tilde{x}_{i+1}=\frac{P\left(F\left(\tilde{x}_{i}\right)\right)}{\left\|P\left(F\left(\tilde{x}_{i}\right)\right)\right\|}, \quad \tilde{x}_{0}=x_{0} \tag{3}
\end{equation*}
$$

This may lead to divergence.

Convergence theory. Generalization

Let L be some abstract set of structured vectors, that includes the solution u.
P is a projector to L, such that

$$
\forall x: x \neq 0 \Rightarrow P(x) \neq 0
$$

$$
\text { (for QTT-format } L_{r}=\left\{x \mid \operatorname{rank}_{i}(x) \leqslant r, i=1 \ldots d-1\right\} \text {) }
$$

'Approximate iterations for structured matrices'
Wolfgang Hackbusch, Boris N. Khoromskij, Eugene E. Tyrtyshnikov

Convergence theory. Generalization

We can also consider $L_{\|\cdot\|}=\{x \mid x \in L,\|x\|=1\}$ and a projector $P_{\|\cdot\|}$ to $L_{\|\cdot\|}$. Lemma
Assume that the inclusion $u \in L$ implies that $\alpha u \in L$ for all α. Let the norm $\|\cdot\|$ be generated by a scalar product. Then, the relation

$$
P_{\|\cdot\|}(x)=\frac{P(x)}{\|P(x)\|}
$$

holds for every $x \neq 0$.
The modified method (3) will be represented as

$$
\begin{equation*}
\tilde{x}_{i+1}=P_{\|\cdot\|}\left(F\left(\tilde{x}_{i}\right)\right), \tilde{x}_{0}=x_{0} \tag{4}
\end{equation*}
$$

The covergence can be proved for several cases.

Convergence theorems

Theorem 1

Let the convergence factor of the original linear method (2) satisfy the condition $\gamma<1 / 2$. Assume that the only requirements for the initial approximation x_{0} are the normalization condition and the nonorthogonality to the exact solution $u \in L$. Then, with the same initial approximation, the modified iterative method (4) converges to the exact solution linearly with the convergence factor $\tilde{\gamma} \leqslant 2 \gamma$.

Corollary

Assume that the original iterative method (2) converges linearly with the convergence factor $\gamma<1 / 2$ until the δ-neighborhood of u is attained, where $\delta<\sqrt{2} / 2$. Also, assume that the only requirements for the initial approximation x_{0} are the normalization condition and the nonorthogonality to the exact solution. Then, with the same initial approximation, the modified iterative method (4) converges to the exact solution u linearly with the convergence factor $\tilde{\gamma} \leqslant 2 \gamma$ until the 2δ-neighborhood of the solution is attained.

Convergence theorems

Inexact case: $\rho(u, L)>0$.
Theorem 2
Let the exact solution u belong to the δ-neighborhood of a structured vector; that is, let $\|P(u)-u\|<\delta$, where $\delta<\sqrt{3} / 2$. Assume that the original iterative method (2) converges linearly with the convergence factor $\gamma<1 / 3$. Also, assume that the only requirements for the initial approximation x_{0} are the normalization condition and the nonorthogonality to the exact solution. Then, with the same initial approximation, the modified iterative method (4) converges to the exact solution u linearly with the convergence factor $\tilde{\gamma} \leqslant 3 \gamma$ until the 3δ-neighborhood of u is attained. If the iterations are continued further, the process may diverge; however, the subsequent approximations do not leave the 3δ-neighborhood of the solution.

Convergence theorems

And what if $\gamma>1 / 2(1 / 3)$?

- Start with structured x_{0};
- Implement $k-1$ non-modified iterations;
- At the k-th iteration perform the appriximation:

$$
\begin{equation*}
x_{1}=F\left(x_{0}\right), \ldots, x_{k-1}=F\left(x_{k-2}\right), x_{k}=\frac{P\left(F\left(x_{k-1}\right)\right)}{\left\|P\left(F\left(x_{k-1}\right)\right)\right\|} \tag{5}
\end{equation*}
$$

- Repeate the approximation periodically at each k-th step .

Convergence theorems

Theorem 3

Assume that the exact solution u belongs to the set L.
Let $k>\log _{1 / \gamma} 2\left(\log _{1 / \gamma} 3\right)$. Then, method (5) converges linearly with the average (over k steps) convergence factor $\tilde{\gamma} \leqslant 2^{1 / k} \gamma\left(3^{1 / k} \gamma\right)$.

Corollary

Assume that the exact solution u belongs to the δ-neighborhood of a structured vector from the set L; that is, assume $\|u-P(u)\|<\delta$, where $\delta<\sqrt{2} / 3$. Let $k>\log _{1 / \gamma} 2$. Then, method (5) with the approximation performed at each k-th step converges linearly with the average (over k steps) convergence factor $\tilde{\gamma} \leqslant 3^{1 / k} \gamma$ until the 3δ-neighborhood of the exact solution is attained.

Convergence theorems

Consider operator P_{ε} that minimizes QTT-ranks under the condition

$$
\left\|P_{\varepsilon}(x)-x\right\| \leqslant \varepsilon\|x\|
$$

P_{ε} is not projector for any set L sinse $P_{\varepsilon}\left(P_{\varepsilon}(x)\right) \neq P_{\varepsilon}(x)$..

Theorem 4

Assume that original method (2) converges linearly with the convergence factor $\gamma<1 / 3$. Also, assume that the only requirements for the initial approximation x_{0} are the normalization condition and the nonorthogonality to the exact solution. Let $\varepsilon<\sqrt{2} / 3$. Then, with the same initial approximation, the ε-modified iterative method (3) converges linearly with the convergence until the 3ε-neighborhood of u is attained. If the iterations are continued further, the process may diverge; however, the subsequent approximations do not leave the 3ε-neighborhood of the solution.

Convergence theorems

Consider operator $P_{\varepsilon, r}$:

$$
P_{\varepsilon, r}(x)=P_{r}\left(P_{\varepsilon}(x)\right)
$$

Also

$$
P_{r \varepsilon} x=\left\{\begin{array}{l}
P_{\varepsilon} x, r_{i}\left(P_{\varepsilon} x\right) \leqslant r_{\max } \forall i \\
P_{r} x, r_{q}\left(P_{\varepsilon} x\right)>r_{\max }
\end{array}\right.
$$

Theorem 5

Assume that original method (2) converges linearly with the convergence factor $\gamma<1 / 3$. Also, assume that the only requirements for the initial approximation x_{0} are the normalization condition and the nonorthogonality to the exact solution. Let $\varepsilon<\sqrt{2} / 3$. Then, with the same initial approximation, the modified iterative method (3) with projector $P_{\varepsilon, r}(x)$ converges linearly with the convergence until the 3ε-neighborhood of u is attained. If the iterations are continued further, the process may diverge; however, the subsequent approximations do not leave the 3ε-neighborhood of the solution.

The Rayleigh quotient

The scalar case

$$
\begin{gathered}
\lambda_{\min }=\min _{x \neq 0} \frac{(M x, x)}{(x, x)} \\
u_{\min }=\arg \min _{x \neq 0} \frac{(M x, x)}{(x, x)}
\end{gathered}
$$

Subspace approach

$$
\begin{gathered}
U=\arg \min _{X^{\top} X=I^{k \times k}} \operatorname{tr}\left(X^{T} M X\right) \\
\min _{X^{\top} X=I^{k \times k}} \operatorname{tr}\left(X^{T} M X\right)=\sum_{i=1}^{k} \lambda_{i}
\end{gathered}
$$

The tensor conjugate gradient method in the scalar case

$$
\min _{x \in X_{i}} \frac{(M x, x)}{(x, x)}
$$

How to construct the subspaces X_{i} ?
The gradient-type methods.
since

$$
\nabla \frac{(M x, x)}{(x, x)}=\frac{2}{(M x, x)}\left(M x-\frac{(M x, x)}{(x, x)} x\right)=\frac{2}{(M x, x)} r(x)
$$

we search for x_{i+1} in $\operatorname{span}\left(x_{i}, r_{i}\right)$:

$$
x_{i+1}=\arg \min _{x \in \operatorname{span}\left(x_{i}, r_{i}\right)} \frac{(M x, x)}{(x, x)}
$$

The tensor conjugate gradient method in the scalar case

The conjugate gradient-type methods.
Minimization within span $\left(x_{i}, r_{i}, x_{i}-x_{i-1}\right)$:

$$
x_{i+1}=\arg \min _{x \in \operatorname{span}\left(x_{i}, r_{i}, x_{i-1}\right)} \frac{(M x, x)}{(x, x)}, \lambda_{i}=\frac{\left(M x_{i+1}, x_{i+1}\right)}{\left(x_{i+1}, x_{i+1}\right)}
$$

'Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method' Andrew V. Knyazev

Note that

$$
\min _{x \in \operatorname{span}\left(x_{i}, r_{i}, x_{i-1}\right)} \frac{(M x, x)}{(x, x)} \leqslant \min _{x \in \operatorname{span}\left(x_{i}, r_{i}\right)} \frac{(M x, x)}{(x, x)}
$$

The tensor conjugate gradient method. Convergance

Steepest decrease
One-step method

$$
x_{i+1}=F\left(x_{i}\right)
$$

Modified version

$$
\tilde{x}_{i+1}=P\left(F\left(\tilde{x}_{i}\right)\right)
$$

Conjugate gradient
Two-step method

$$
x_{i+1}=G\left(x_{i}, x_{i-1}\right)
$$

Modified version

$$
\tilde{x}_{i+1}=P\left(G\left(\tilde{x}_{i}, \tilde{x}_{i-1}\right)\right)
$$

Since $\left\|G\left(\tilde{x}_{i}, \tilde{x}_{i-1}\right)-u\right\| \leqslant\left\|F\left(\tilde{x}_{i}\right)-u\right\|$ we obtain

$$
\tilde{\gamma}^{c g} \leqslant \tilde{\gamma}^{s d} \leqslant 2 \gamma^{s d}\left(3 \gamma^{s d}\right)
$$

The tensor conjugate gradient method. Scalar version

Algorithm

- Choose initial $x_{0},\left\|x_{0}\right\|=1$
- $\lambda_{0}=\left(M x_{0}, x_{0}\right), r_{0}=\left(M x_{0}-\lambda_{0} x_{0}\right) /\left\|M x_{0}-\lambda_{0} x_{0}\right\|$
- Rayleigh-Ritz procedure for $\operatorname{span}\left(x_{0}, r_{0}\right)$.

Get the lowest Ritz value λ_{1} and the corresponding Ritz vector $x_{1}=\left[x_{0}, r_{0}\right] y$.

- $r_{1}=\left(M x_{1}-\lambda_{1} x_{1}\right) /\left\|M x_{1}-\lambda_{1} x_{1}\right\|$
- Introduce $p_{1}=\left[0, r_{0}\right] y=x_{1}-\left(x_{0}, x_{1}\right) x_{0}$
- Main loop:
- Rayleigh-Ritz procedure for $\operatorname{span}\left(x_{i}, r_{i}, p_{i}\right)$. Get the lowest Ritz value λ_{i+1} and the corresponding Ritz vector $x_{i+1}=\left[x_{i}, r_{i}, p_{i}\right] y$.
- $r_{i+1}=\left(M x_{i+1}-\lambda_{i+1} x_{i+1}\right) /\left\|M x_{i+1}-\lambda_{i+1} x_{i+1}\right\|$
- $p_{i+1}=\left[0, r_{i}, p_{i}\right] y$

The tensor conjugate gradient method. Block version

Simultanious searching for k lowest eigenpairs.

- If k is rather large, we split the task and use deflations.
- k current approximations of eigenvectors are the colunms of an orthogonal $n \times k$ matrix X_{i}.
- The Rayleigh-Ritz procedure for $3 k$-dimensional subspace $\operatorname{span}\left(X_{i}, R_{i}, P_{i}\right)$.
Obtaining k Ritz vectors.
- The colunms of R_{i}, P_{i} should be orthogonalized.
- The colunms of R_{i}, P_{i} are no longer orthogonal to the colunms of X_{i}.

The tensor conjugate gradient method. Block version

Algorithm

- Choose initial $X_{0}: X_{0}^{T} X_{0}=1^{k \times k}$
- $\Lambda_{0}=\operatorname{diag}\left(X_{0}^{T} M X_{0}\right), R_{0}=M X_{0}-X_{0} \Lambda_{0}$
- Orthogonalization of R_{0}
- Rayleigh-Ritz procedure for $\operatorname{span}\left(X_{0}, R_{0}\right)$. Get the k lowest Ritz values Λ_{1} and the corresponding Ritz vectors X_{1}.
- $R_{1}=M X_{1}-X_{1} \Lambda_{1}$

Orthogonalize of R_{1}

- Introduce $P_{1}=R_{0}$
- Main loop

The tensor conjugate gradient method. Block version

- Main loop
- Rayleigh-Ritz procedure for $\operatorname{span}\left(X_{i}, R_{i}, P_{i}\right)$ Get the k lowest Ritz values Λ_{i+1} and the corresponding Ritz vectors $X_{i+1}=\left[X_{i}, R_{i}, P_{i}\right] Y$
- $R_{i+1}=M X_{i+1}-X_{i+1} \Lambda_{i+1}$ $\left(R_{i+1}\right)_{(j)} \perp\left(X_{i+1}\right)_{(j)}$, but span $\left(R_{i+1}\right)$ and $\operatorname{span}\left(X_{i+1}\right)$ are not orthogonal
- Apply deflation to $R_{i+1}: R_{i+1}=\left(I-X X^{T}\right) R_{i+1}$
- Orthogonalize the colunms of R_{i+1}
- $P_{i+1}=\left[0, R_{i}, P_{i}\right] Y$
- Orthogonalize the colunms of P_{i+1}
- Main loop
- Rayleigh-Ritz procedure for $\operatorname{span}\left(X_{i}, R_{i}, P_{i}\right)$ Get the k lowest Ritz values Λ_{i+1} and the Ritz vectors in QTT-format $X_{i+1}=\left[X_{i}, R_{i}, P_{i}\right] Y$ Ranks grow
- Compress the columns of X_{i+1}
- $R_{i+1}=M X_{i+1}-X_{i+1} \Lambda_{i+1}$ Ranks grow
- Apply deflation to $R_{i+1}: R_{i+1}=\left(I-X X^{T}\right) R_{i+1}$ Ranks grow
- Orthogonalize the colunms of R_{i+1}

Ranks grow

- Compress the columns of R_{i+1}
- $P_{i+1}=\left[0, R_{i}, P_{i}\right] Y$ Ranks grow
- Orthogonalize the colunms of P_{i+1} Ranks grow
- Compress the columns of P_{i+1}

Block QTT

Block operations such as orthogonalization, block-by-matrix multiplication lead to the additional increase of tensor ranks of vectors.

Label the number of column in the block j an additional dimension of tensor.
Apply TT-decomposition to this tensor:

$$
X_{\left(i_{1}, \ldots, i_{d}\right), j} \approx \sum_{\alpha_{1}, \ldots, \alpha_{d-1}, \alpha}^{r_{1}, \ldots, r_{d-1}, r} g_{1}\left(i_{1}, \alpha_{1}\right) \ldots g_{d}\left(\alpha_{d-1}, i_{d}, \alpha\right) g_{d+1}(\alpha, j)
$$

Block QTT

$$
X_{\left(i_{1}, \ldots, i_{d}\right), j} \approx \sum_{\alpha} \underbrace{\sum_{\alpha_{1}, \ldots, \alpha_{d-1}} g_{1}\left(i_{1}, \alpha_{1}\right) \ldots g_{d}\left(\alpha_{d-1}, i_{d}, \alpha\right)}_{\text {common base }} g_{d+1}(\alpha, j)
$$

Common base may be composed from the columns of $X=\left[x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right]$

Block QTT

$$
X_{\left(i_{1}, \ldots, i_{d}\right), j} \approx \sum_{\alpha} \underbrace{\sum_{\alpha_{1}, \ldots, \alpha_{d-1}} g_{1}\left(i_{1}, \alpha_{1}\right) \ldots g_{d}\left(\alpha_{d-1}, i_{d}, \alpha\right)}_{\text {common base }} g_{d+1}(\alpha, j) .
$$

Common base may be composed from the columns of $X=\left[x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right]$

Block QTT

Consider the $(i+1)$-th core of each decomposition $(i=1 \ldots d-3)$

We will put them together in a common core.

Block QTT

Consider the $(i+1)$-th core of each decomposition $(i=1 \ldots d-3)$

We will put them together in a common core. And compress.

Block QTT operations

- Quick orthogonalization without ranks growth (left-to-right QR sweep);
- Quick orthogonalization with compression (3 sweeps);
- Linear combinations of the columns

$$
X_{\left(i_{1}, \ldots, i_{d}\right), j} W_{j, l} \approx \sum_{\alpha=1}^{r}\left(\sum_{\alpha_{1}, \ldots, \alpha_{d-1}}^{r_{1}, \ldots, r_{d-1}} g_{1}\left(i_{1}, \alpha_{1}\right) \ldots g_{d}\left(\alpha_{d-1}, i_{d}\right)\right) g_{d+1}(\alpha, j) W(j, l)
$$

- Block operations $X^{T} Y, M X$;
- Cut a column, add a column, and others.

Stopping criterion

- Residual norm

$$
\left\|r_{i}^{i t}\right\| / \lambda_{i}^{i t} \leqslant \varepsilon_{1}
$$

(since $\left.\left|\left(M x_{i}^{i t}, x_{i}^{i t}\right) /\left(x_{i}^{i t}, x_{i}^{i t}\right)-\lambda_{i}\right| \leqslant\left\|r_{i}\right\|\right)$

- Eigenvalue difference

$$
\left|\lambda_{i}^{i t+1}-\lambda_{i}^{i t}\right| / \lambda_{i}^{i t} \leqslant \varepsilon_{2}
$$

Numerical experiments

Finite difference or finite element discretizations in the following domains
2-dimensional case

3-dimensional case
Parallelepipeds, polyhedral regions, their unions and intersections

Numerical experiments

Average iteration time

Discrete Laplace operator in 2-dimensional rectangular domain $n \times n\left(n=2^{d}, d=10, \ldots, 20\right)$ vector length $n^{2}\left(2^{20}, 2^{22}, \ldots, 2^{40}\right)$, block size $5, r_{\text {max }}=25$

Numerical examples

Harmonic oscillator

$$
-\Delta u+\|r\|^{2} u=\lambda u
$$

in 3-dimensional cube $[0,1] \times[0,1] \times[0,1]$, homogeneous Dirichlet boundary conditions.
$n=2^{5}$ points each direction $\left(N=2^{15}\right)$

Numerical example

Anharmonic oscillator

$$
-\Delta u+\left(\alpha_{1} x^{2}+\alpha_{2} y^{2}+\alpha_{3} x^{4}+\alpha_{4} y^{4}+\alpha_{5} x^{2} y^{2}\right) u=\lambda u\left(\alpha_{3}, \alpha_{4}, \alpha_{5}<\alpha_{1}, \alpha_{2}\right)
$$

Discretization in 2-dimensional rectangular domain $[-5,5] \times[-5,5]$ $\left(n=2^{d}, d=6, \ldots, 10\right)$

We used the solution of harmonic oscillator as an initial approximation for anharmonic oscillator

Numerical example

Anharmonic oscillator

$$
-\Delta u+\left(\alpha_{1} x^{2}+\alpha_{2} y^{2}+\alpha_{3} x^{4}+\alpha_{4} y^{4}+\alpha_{5} x^{2} y^{2}\right) u=\lambda u\left(\alpha_{3}, \alpha_{4}, \alpha_{5}<\alpha_{1}, \alpha_{2}\right)
$$

Discretization in 2-dimensional rectangular domain $[-5,5] \times[-5,5]$ $\left(n=2^{d}, d=6, \ldots, 10\right)$
Harmonic oscillator

$$
-\Delta u+\alpha_{1}\left(x^{2}+y^{2}\right) u=\lambda u
$$

We used the solution of harmonic oscillator as an initial approximation for anharmonic oscillator.

Numerical example

Covergence of eigenvalues under the mesh size.

	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}
$d=3$	1.9486	3.4531	3.4609	5.8688	5.9841	5.9887
$d=4$	2.0690	4.1186	4.1200	6.0632	6.1612	6.1688
$d=5$	2.1142	4.2444	4.2553	6.3544	6.3640	6.4955
$d=6$	2.1172	4.2698	4.2765	6.4156	6.4212	6.5783
$d=7$	2.1210	4.2815	4.2879	6.4421	6.4459	6.6039
$d=8$	2.1222	4.2870	4.2906	6.3371	6.4657	6.6173

Thank you for your attention!

