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Problem statement

We consider a standard partial eigenproblem

MX = XΛ (1)

for a symmetric positive-definite matrix M = MT > 0.

We wish to approximate k = 5 . . . 30 lowest eigenpairs
(X ∈ Rn×k , Λ is a diagonal matrix).

The matrix and its eigenvectors are supposed to posses
an approximate low-parametric structure
based on the QTT-decomposition.
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QTT-format

Let n = 2d . For a vector

I Separate indexes:
replace a ”long” index i = 1 . . . 2d

with a set of ”short” indexes i1, . . . , id = 1, 2

I Apply the TT-approximation

Xi1,...,id ≈
r1,...,rd−1X

α1,...,αd−1

g1(i1, α1)g2(α1, i2, α2) . . . gd−1(αd−2, id−1, αd−1)gd (αd−1, id )

The same way for a matrix

M ≈
R1,...,Rd−1X
α1,...,αd−1

G1(i1, j1, α1)G2(α1, i2, j2, α2) . . . Gd(αd−1, id , jd).

If all mode ranks ri are bounded the required memory is O(log n)!
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Required linear algebra operations

TT-Toolbox http://spring.inm.ras.ru/osel

I Matrix-by-vector multiplication

ri (Mx) = Ri (M)ri (x);

I Linear combinations of vectors

ri (αx + βy) = ri (x) + ri (y);

I Scalar multiplication of vectors.

+ Run-time O(log(n))

+ QTT-format remains

– Ranks grow!
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Compression procedures

For a given vector x in QTT-format to obtain a QTT-approximation with
smaller mode ranks.

I Rank minimization with a fixed tolerance

‖x − Pεx‖ < ε‖x‖

I Strict boundaries for mode ranks

ri (Prx) 6 rmax, i = 1, . . . , d − 1

I Combination

Prεx =

{
Pεx , ri (Pεx) 6 rmax ∀ i

Prx , rq (Pεx) > rmax

Also,

I Krylov-based compression procedures for Mx ;

I ALS-based compression procedures for
∑

i xi .

TT-Toolbox http://spring.inm.ras.ru/osel
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The modified iteration method with structure

Suppose we have an iterative method

xi+1 = F (xi ), ‖x0‖ = 1, (x0, u) 6= 0 (2)

with linear covergence rate

‖xi+1 − u‖ 6 γ‖xi − u‖ (γ < 1).

We will replace all vectors by their normalized QTT-approximations:

x̃i+1 =
P(F (x̃i ))

‖P(F (x̃i ))‖
, x̃0 = x0. (3)

This may lead to divergence.
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Convergence theory. Generalization

Let L be some abstract set of structured vectors, that includes the solution u.

P is a projector to L, such that

∀ x : x 6= 0 ⇒ P(x) 6= 0

(for QTT-format Lr = {x | ranki (x) 6 r , i = 1 . . . d − 1} )

’Approximate iterations for structured matrices’
Wolfgang Hackbusch, Boris N. Khoromskij, Eugene E. Tyrtyshnikov
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Convergence theory. Generalization

We can also consider L‖·‖ = {x | x ∈ L, ‖x‖ = 1} and a projector P‖·‖ to L‖·‖.

Lemma
Assume that the inclusion u ∈ L implies that αu ∈ L for all α.
Let the norm ‖ · ‖ be generated by a scalar product. Then, the relation

P‖·‖(x) =
P(x)

‖P(x)‖

holds for every x 6= 0.

The modified method (3) will be represented as

x̃i+1 = P‖·‖(F (x̃i )), x̃0 = x0. (4)

The covergence can be proved for several cases.
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Convergence theorems

Theorem 1
Let the convergence factor of the original linear method (2) satisfy the
condition γ < 1/2. Assume that the only requirements for the initial
approximation x0 are the normalization condition and the nonorthogonality to
the exact solution u ∈ L. Then, with the same initial approximation, the
modified iterative method (4) converges to the exact solution linearly with the
convergence factor γ̃ 6 2γ.

Corollary
Assume that the original iterative method (2) converges linearly with the
convergence factor γ < 1/2 until the δ-neighborhood of u is attained, where
δ <

√
2/2. Also, assume that the only requirements for the initial

approximation x0 are the normalization condition and the nonorthogonality to
the exact solution. Then, with the same initial approximation, the modified
iterative method (4) converges to the exact solution u linearly with the
convergence factor γ̃ 6 2γ until the 2δ-neighborhood of the solution is
attained.
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Convergence theorems

Inexact case: ρ(u, L) > 0.

Theorem 2
Let the exact solution u belong to the δ-neighborhood of a structured vector;
that is, let ‖P(u)− u‖ < δ, where δ <

√
3/2 . Assume that the original

iterative method (2) converges linearly with the convergence factor γ < 1/3.
Also, assume that the only requirements for the initial approximation x0 are the
normalization condition and the nonorthogonality to the exact solution.
Then, with the same initial approximation, the modified iterative method (4)
converges to the exact solution u linearly with the convergence factor γ̃ 6 3γ
until the 3δ-neighborhood of u is attained. If the iterations are continued
further, the process may diverge; however, the subsequent approximations do
not leave the 3δ-neighborhood of the solution.
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Convergence theorems

And what if γ > 1/2 (1/3)?

I Start with structured x0;

I Implement k − 1 non-modified iterations;

I At the k-th iteration perform the appriximation:

x1 = F (x0), . . . , xk−1 = F (xk−2), xk =
P(F (xk−1))

‖P(F (xk−1))‖
(5)

I Repeate the approximation periodically at each k-th step .
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Convergence theorems

Theorem 3
Assume that the exact solution u belongs to the set L.
Let k > log1/γ2 (log1/γ3). Then, method (5) converges linearly with the

average (over k steps) convergence factor γ̃ 6 21/kγ (31/kγ) .

Corollary
Assume that the exact solution u belongs to the δ-neighborhood of a structured
vector from the set L; that is, assume ‖u − P(u)‖ < δ, where δ <

√
2/3. Let

k > log1/γ2. Then, method (5) with the approximation performed at each k-th
step converges linearly with the average (over k steps) convergence factor
γ̃ 6 31/kγ until the 3δ-neighborhood of the exact solution is attained.
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Convergence theorems

Consider operator Pε that minimizes QTT-ranks under the condition

‖Pε(x)− x‖ 6 ε‖x‖

Pε is not projector for any set L sinse Pε(Pε(x)) 6= Pε(x)..

Theorem 4
Assume that original method (2) converges linearly with the convergence
factor γ < 1/3. Also, assume that the only requirements for the initial
approximation x0 are the normalization condition and the nonorthogonality to
the exact solution. Let ε <

√
2/3. Then, with the same initial approximation,

the ε-modified iterative method (3) converges linearly with the convergence
until the 3ε-neighborhood of u is attained. If the iterations are continued
further, the process may diverge; however, the subsequent approximations do
not leave the 3ε-neighborhood of the solution.
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Convergence theorems

Consider operator Pε,r :
Pε,r (x) = Pr (Pε(x))

Also

Prεx =

(
Pεx , ri (Pεx) 6 rmax ∀ i

Prx , rq (Pεx) > rmax

Theorem 5
Assume that original method (2) converges linearly with the convergence
factor γ < 1/3. Also, assume that the only requirements for the initial
approximation x0 are the normalization condition and the nonorthogonality to
the exact solution. Let ε <

√
2/3. Then, with the same initial approximation,

the modified iterative method (3) with projector Pε,r (x) converges linearly with
the convergence until the 3ε-neighborhood of u is attained. If the iterations are
continued further, the process may diverge; however, the subsequent
approximations do not leave the 3ε-neighborhood of the solution.
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The Rayleigh quotient

The scalar case

λmin = min
x 6=0

(Mx , x)

(x , x)

umin = arg min
x 6=0

(Mx , x)

(x , x)

Subspace approach

U = arg min
XT X=I k×k

tr(XTMX )

min
XT X=I k×k

tr(XTMX ) =
kX

i=1

λi
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The tensor conjugate gradient method in the scalar case

min
x∈Xi

(Mx , x)

(x , x)

How to construct the subspaces Xi?

The gradient-type methods.
since

∇ (Mx , x)

(x , x)
=

2

(Mx , x)

„
Mx − (Mx , x)

(x , x)
x

«
=

2

(Mx , x)
r(x)

we search for xi+1 in span (xi , ri ):

xi+1 = arg min
x∈span (xi ,ri )

(Mx , x)

(x , x)
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The tensor conjugate gradient method in the scalar case

The conjugate gradient-type methods.
Minimization within span (xi , ri , xi − xi−1):

xi+1 = arg min
x∈span (xi ,ri ,xi−1)

(Mx , x)

(x , x)
, λi =

(Mxi+1, xi+1)

(xi+1, xi+1)

’Toward the optimal preconditioned eigensolver: locally optimal block
preconditioned conjugate gradient method’ Andrew V. Knyazev

Note that

min
x∈span (xi ,ri ,xi−1)

(Mx , x)

(x , x)
6 min

x∈span (xi ,ri )

(Mx , x)

(x , x)
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The tensor conjugate gradient method. Convergance

Steepest decrease
One-step method

xi+1 = F (xi )

Modified version

x̃i+1 = P(F (x̃i ))

Conjugate gradient
Two-step method

xi+1 = G(xi , xi−1)

Modified version

x̃i+1 = P(G(x̃i , x̃i−1))

Since ‖G (x̃i , x̃i−1)− u‖ 6 ‖F (x̃i )− u‖ we obtain

γ̃cg 6 γ̃sd 6 2γsd (3γsd)
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The tensor conjugate gradient method. Scalar version

Algorithm

I Choose initial x0, ||x0|| = 1

I λ0 = (Mx0, x0), r0 = (Mx0 − λ0x0)/||Mx0 − λ0x0||
I Rayleigh-Ritz procedure for span (x0, r0).

Get the lowest Ritz value λ1 and the corresponding Ritz vector x1 = [x0, r0]y .

I r1 = (Mx1 − λ1x1)/||Mx1 − λ1x1||
I Introduce p1 = [0, r0]y = x1 − (x0, x1)x0

I Main loop:

I Rayleigh-Ritz procedure for span (xi , ri , pi ).
Get the lowest Ritz value λi+1 and the corresponding Ritz
vector xi+1 = [xi , ri , pi ]y .

I ri+1 = (Mxi+1 − λi+1xi+1)/||Mxi+1 − λi+1xi+1||
I pi+1 = [0, ri , pi ]y
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The tensor conjugate gradient method. Block version

Simultanious searching for k lowest eigenpairs.

I If k is rather large, we split the task and use deflations.

I k current approximations of eigenvectors are
the colunms of an orthogonal n × k matrix Xi .

I The Rayleigh-Ritz procedure for 3k-dimensional subspace
span (Xi , Ri , Pi ).
Obtaining k Ritz vectors.

I The colunms of Ri , Pi should be orthogonalized.

I The colunms of Ri , Pi are no longer orthogonal to the colunms of Xi .
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The tensor conjugate gradient method. Block version

Algorithm

I Choose initial X0: XT
0 X0 = I k×k

I Λ0 = diag (XT
0 MX0), R0 = MX0 − X0Λ0

I Orthogonalization of R0

I Rayleigh-Ritz procedure for span (X0, R0).
Get the k lowest Ritz values Λ1

and the corresponding Ritz vectors X1.

I R1 = MX1 − X1Λ1

Orthogonalize of R1

I Introduce P1 = R0

I Main loop
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The tensor conjugate gradient method. Block version

I Main loop

I Rayleigh-Ritz procedure for span (Xi ,Ri ,Pi )
Get the k lowest Ritz values Λi+1

and the corresponding Ritz vectors Xi+1 = [Xi ,Ri ,Pi ]Y
I Ri+1 = MXi+1 − Xi+1Λi+1

(Ri+1)(j)⊥(Xi+1)(j), but span (Ri+1) and span (Xi+1) are not
orthogonal

I Apply deflation to Ri+1: Ri+1 = (I − XXT )Ri+1

I Orthogonalize the colunms of Ri+1

I Pi+1 = [0,Ri ,Pi ]Y
I Orthogonalize the colunms of Pi+1
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The tensor conjugate gradient method. Block QTT version

I Main loop

I Rayleigh-Ritz procedure for span (Xi ,Ri ,Pi )
Get the k lowest Ritz values Λi+1

and the Ritz vectors in QTT-format Xi+1 = [Xi ,Ri ,Pi ]Y
Ranks grow

I Compress the columns of Xi+1

I Ri+1 = MXi+1 − Xi+1Λi+1

Ranks grow
I Apply deflation to Ri+1: Ri+1 = (I − XXT )Ri+1 Ranks grow
I Orthogonalize the colunms of Ri+1

Ranks grow
I Compress the columns of Ri+1

I Pi+1 = [0,Ri ,Pi ]Y Ranks grow
I Orthogonalize the colunms of Pi+1

Ranks grow
I Compress the columns of Pi+1
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Block QTT

Block operations such as orthogonalization, block-by-matrix multiplication
lead to the additional increase of tensor ranks of vectors.

Label the number of column in the block j an additional dimension of tensor.

Apply TT-decomposition to this tensor:

X(i1,...,id ), j ≈
r1,...,rd−1,rX

α1,...,αd−1,α

g1(i1, α1) . . . gd(αd−1, id , α) gd+1(α, j).
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Block QTT

X(i1,...,id ), j ≈
X

α

X
α1,...,αd−1

g1(i1, α1) . . . gd(αd−1, id , α)

| {z }
common base

gd+1(α, j).

Common base may be composed from the columns of X = [x (1), x (2), . . . , x (k)]
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Block QTT

X(i1,...,id ), j ≈
X

α

X
α1,...,αd−1

g1(i1, α1) . . . gd(αd−1, id , α)

| {z }
common base

gd+1(α, j).

Common base may be composed from the columns of X = [x (1), x (2), . . . , x (k)]
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Block QTT

Consider the (i + 1)-th core of each decomposition (i = 1 . . . d − 3)

We will put them together in a common core.
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Block QTT

Consider the (i + 1)-th core of each decomposition (i = 1 . . . d − 3)

We will put them together in a common core. And compress.
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Block QTT operations

I Quick orthogonalization without ranks growth (left-to-right QR sweep);

I Quick orthogonalization with compression (3 sweeps);

I Linear combinations of the columns

X(i1,...,id ), jWj,l ≈
rX

α=1

0@ r1,...,rd−1X
α1,...,αd−1

g1(i1, α1) . . . gd(αd−1, id)

1A gd+1(α, j)W (j , l);

I Block operations XTY , MX ;

I Cut a column, add a column, and others.
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Stopping criterion

I Residual norm
‖r it

i ‖/λit
i 6 ε1

(since |(Mx it
i , x it

i )/(x it
i , x it

i )− λi | 6 ‖ri‖)

I Eigenvalue difference
|λit+1

i − λit
i |/λit

i 6 ε2.
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Numerical experiments

Finite difference or finite element discretizations in the following domains

2-dimensional case

3-dimensional case
Parallelepipeds, polyhedral regions, their unions and intersections
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Numerical experiments

Average iteration time

Discrete Laplace operator in 2-dimensional rectangular domain n × n (n = 2d , d = 10, . . . , 20)

vector length n2 (220, 222, . . . , 240), block size 5, rmax = 25
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Numerical examples

Harmonic oscillator

−∆u + ‖r‖2u = λu

in 3-dimensional cube [0, 1]× [0, 1]× [0, 1], homogeneous Dirichlet boundary
conditions.

n = 25 points each direction (N = 215)

Left picture: |λit+1 − λit |; right picture: ‖ri‖.
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Numerical example

Anharmonic oscillator

−∆u + (α1x
2 + α2y

2 + α3x
4 + α4y

4 + α5x
2y 2)u = λu (α3, α4, α5 < α1, α2)

Discretization in 2-dimensional rectangular domain [−5, 5]× [−5, 5]
(n = 2d , d = 6, . . . , 10)

Harmonic oscillator

−∆u + α1(x
2 + y 2)u = λu

We used the solution of harmonic oscillator as an initial approximation for
anharmonic oscillator.
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Numerical example

Covergence of eigenvalues under the mesh size.

λ1 λ2 λ3 λ4 λ5 λ6

d = 3 1.9486 3.4531 3.4609 5.8688 5.9841 5.9887

d = 4 2.0690 4.1186 4.1200 6.0632 6.1612 6.1688

d = 5 2.1142 4.2444 4.2553 6.3544 6.3640 6.4955

d = 6 2.1172 4.2698 4.2765 6.4156 6.4212 6.5783

d = 7 2.1210 4.2815 4.2879 6.4421 6.4459 6.6039

d = 8 2.1222 4.2870 4.2906 6.3371 6.4657 6.6173
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Thank you for your attention!
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