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Representation of moduli spaces of curves
and calculation of extremal polynomials

A. B. Bogatyrév

Abstract. The classical Chebyshev and Zolotarév polynomials are the first ranks
of the hierarchy of extremal polynomials, which are typical solutions of problems
on the conditional minimization of the uniform norm over a space of polynomials.
In the general case such polynomials are connected with hyperelliptic curves the
genus of which labels the ranks of the hierarchy. Representations of the moduli
spaces of such curves are considered in this paper with applications to the calcula-
tion of extremal polynomials. Uniformizing curves by special Schottky groups one
obtains effectively computable parametric expressions for extremal polynomials in
terms of linear series of Poincaré.
Bibliography: 12 titles

§ 1. Introduction

150 years ago, Chebyshev and his school started the investigation of problems
of the conditional minimization, over the space of real polynomials P(x), of their
deviation |P||g := max,cg |P(z)|, where E is a compact subset of the real axis.
Typical constraints in such a problem are an upper bound on the degree n = deg P
of the polynomial and fixed values of its derivatives P(™) (), m =0,1,2,..., at
certain fixed points z € C.

Nowadays, interest in least deviation problems relates, for instance, to the opti-
mization of numerical methods and signal processing. Iterative methods of condi-
tional minimization (see the references in [1]) are very labour-consuming for high
degrees n of the solution. The classical approach, when the solution is normally
given by an explicit formula, is free from this deficiency. The first least deviation
problems were solved in the form of parametric expressions (Chebyshev, 1853, and
Zolotarév, 1868 [2]):

T, (u) := cos(nu), x(u) := cos(u), ue€C, (1)

= 3{ (i) e ) =S <,
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where H(-) is the elliptic theta function in the (now outdated) Jacobi notation,
sn(-) is the elliptic sine function of the same modulus k € (0,1), a := mK(k)/n,
m = 1,2,...,n — 1, is the phase shift, and K (k) is the full elliptic integral of
modulus k. The expressions T), and Z,, are z-polynomials of degree n satisfying
the following definition. We say that a real polynomial is (normalized) extremal if
all its critical points, except a small number g of them, are simple and correspond
to the values £1. For the Chebyshev polynomials 7,, one has ¢ = 0 and for the
Zolotarév polynomials Z,,, g = 1. The theory of general extremal polynomials for
g=0,1,2,... has been developed in [1]. We now present the requisite information
on the representation of such polynomials.

A construction going back to Chebyshev associates with a real polynomial P, (x)
the real hyperelliptic curve

2g+2
M = M(e) := {(m,w)e@2zw2= H(m—es)}, e:={e}29%%  (3)
s=1

with branching divisor e equal to the odd-order zeros of the polynomial P2(z) — 1.
If P,(z) is a normalized extremal polynomial, then the genus g of M is not large;
it is equal to the properly counted number of exceptional critical points of the
polynomial. The polynomial of degree n can be recovered from the associated
curve (3) up to a sign by an explicit formula generalizing (1) and (2):

(w,w)
P, (z) = tcos (m/ an>, zeC, (z,w)eM, (4)
(e,0)
g dz
where dny := H(m - CS)E is an Abelian differential with purely imaginary peri-
s=1

ods. The curve (3) associated with a polynomial of degree n satisfies the system of
Abel’s equations

—i/ dny =2m2 5=0,1,...,g, (5)
o n

where {C }7_, is a basis in the lattice of integral 1-cycles on the curve M changing
sign after the anticonformal involution J(z,w) := (Z,w), and the m, are integers
from the domain described in [3].

The aim of the present paper is twofold:

(A) to solve effectively Abel’s equations (5) in the moduli space of the curves M;

(B) to calculate effectively by formula (4) extremal polynomials and their deriva-
tives of various orders so that they comply with the constraints of the least
deviation problem.

In the special case of Chebyshev polynomials on several intervals this aim was
attained in [4] by means of the uniformization of the curves M in question by
Schottky groups. The extension of these techniques to the general case comes up
against a more complicated topology of the moduli space of the curves (3). A com-
ponent of this space is homeomorphic to the product of a cell by the configuration
space of a (half-)plane and its fundamental group is an Artin braid group. Our
problems (A) and (B) require an organization of iterative computations on moduli
spaces; to this end we perform an analytic uniformization of these spaces.
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§ 2. Representations of moduli spaces

Real hyperelliptic curves (3) associated with polynomials are distinguished by
means of Abel’s equations (5) defined globally on the universal cover of the curve
moduli space. It can be useful to look at an object of investigation from various
standpoints, therefore we present four definitions of this space and demonstrate
their equivalence. In the standard fashion the universal cover of the moduli space
is defined as the set of branching divisors e of the prescribed type together with the
history of their motion starting from a fixed divisor €’. By considering a divisor
as moving in a viscous medium and carrying with it particles of this medium we
arrive at the Teichmiiller space of a punctured disc with distinguished boundary
points, a flexible technique, which reveals connections that exist between views from
various standpoints. The deformation spaces of special Kleinian groups bring forth
global coordinates in the space under study and allow an effective construction of
analytic objects. Labyrinth spaces, the most geometric of them all, enable one to
calculate [3] the range of the period map defined by the left-hand sides of Abel’s
equations.

2.1. Four definitions. We fix the topological invariants of a real curve (3): its
genus g = 0,1,2, ... and the number of coreal ovals k = 0,1,...,g+1. A symmetric
divisor e of type (g, k) is an unordered set of distinct points e1, . .., e2g12 consisting
of 2k real points and g—k+1 pairs of complex conjugate ones. On such sets we have
a free action of the group 2 of orientation-preserving affine motions of the real
axis: e = {e;}°9%% — de + B = {Ae, + B}?91? A >0, B € R. We shall call the
orbits of this action the moduli space 9—(’;. Points in the moduli space correspond
to conformal classes of real hyperelliptic curves (3) with fixed invariants g, k and
distinguished point co; on the oriented real oval. The space 9—(’; has the natural
structure of a real 2g-manifold. For the introduction of local coordinates in the
neighbourhood of a fixed divisor €® we number the point in the set e® = {e,}>91?
and fix a pair of complex conjugate or a pair of real points ezgy1, e2442. For local
coordinate variables we take the quantities Rees and Im e, for the points es in the
open upper half-plane H and Reeg for the real points es, s =1,2, ..., 2g.

Lemma 1 [1]. The fundamental group of the moduli space m (HE) is isomorphic
to the group Brgy_ji1 of Artin braids on g — k + 1 strings.

The space of classes of homotopically equivalent paths in 9—(’; starting at the

distinguished point € in the moduli space is called the universal cover JN-C’; (e9). Tt
has three representations described below.

2.1.1. Teichmiiller space. Quasiconformal homeomorphisms of the upper half-
plane H with fixed infinity form a group QC'(H) with respect to taking compos-
ites. Each map f € QC(H) can be extended to a quasiconformal homeomorphism
of C by means of the reflection relative to the real axis. The motions f stabi-
lizing the fixed branching divisor € (but possibly rearranging points in it) make
up a subgroup QC(H,e"). The motions f joined to id by a homotopy of the
punctured sphere CP; \ €’ stabilizing infinity make up a subgroup QC°(H, e°) of
QC(H,e°). Tt acts on QC(H) by right multiplications, while the affine group 2
acts by left multiplications. These actions commute and the well-defined two-sided
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quotient T¥(e%) := A{ \ QC(H)/QC°(H, €°) is called the Teichmiiller space. By
the Teichmiiller distance between classes [f], [h] € T%(e”) one means the minimum
over all representatives f1 € [f], hi € [h] of the logarithm of the dilatation of the
quasiconformal map f; hl_l.

The modular group Mod(e?) := QC(H, e’)/QC°(H, e") acts by right multipli-
cations on the Teichmiiller space and the corresponding automorphisms are isome-
tries. One’s choice of a distinguished divisor € in the definition of the Teichmiiller
space is not essential: a motion h € QC(H) gives rise to an isometry of T%(e°)
onto ‘J'g (he®) by the formula f — fh~t. Obviously, QC(H, he’) = hQC (H, e®)h~*
and QC°(H, he®) = hQC°(H, e®)h~!, therefore the modular groups Mod(e) and
Mod (he®) are isomorphic and our isometry T%(e”) — T%(he®) commutes with the
action of the modular groups in each space.

Assigning to a motion f € QC(H) the branching divisor e := f(e") we obtain a
projection of the Teichmiiller space onto the moduli space. The fibres of this pro-
jection are orbits of the modular group. We shall demonstrate that this projection
coincides with the universal cover.

2.1.2. Deformation space of the group. We partition the index set {0, 1,..., g}
into two subsets: a (g — k + 1)-element one i and its k-element complement 1.
The deformation space GE(i) is formed by ordered sets {G}7_, of linear fractional
rotations of the second order with real fixed points c, =7 for s € i’ or with complex
conjugate fixed points cs £ irg for s € i:

2
./ s 1
—Uu, 061, Cs+’U/—C, set,
Gou := 1 ) Ggu = o s=1,2,...,9. (6)
——, 0e€i, Ty .
U cs — , SEi,
U — Cg

The real parameters ¢, and 75 (the moduli) are selected so that the following geo-
metric condition holds. There exist g disjoint subintervals of (0, us) numbered in
increasing order such that the circles Cy, Co, . . .,Cy with diameters on these inter-
vals pass through the fized points of the corresponding motions G1,Ga, ..., G4 (see
Fig. 1(a)). The distinguished point ue, is +00 if 0 € i, and ue, :=1 for 0 € {'.

(a) The circles C1, Ca,...,Cq4 for i = {1,2} (b) The limiting position of the circles

Figure 1

IThis is a modification of the standard definition [5] of the Teichmuller space of a disc with
g — k + 1 punctures and 2k 4+ 1 distinguished points at the boundary.
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If this condition is fulfilled, then the y-axis Cy and the circles C1,Cy,...,Cy
bound the fundamental domain R of the Kleinian group & generated by the rota-
tions Gy, G1,...,G,4. By Klein’s combination theorem [6] the group & is the free
product of g+1 second-order groups. The hyperbolic motions {S; := G;Go}{_, gen-
erate the Schottky group &, |® : 6| = 2. These two groups have a common domain
of discontinuity D and a limit set lying on the real axis. The linear measure of the
limit set is zero since the group & satisfies the following Schottky criterion [7]:
the fundamental domain R(G) (= the exterior of the 2g circles GoCy, . .., GoCh;
Cy,...,C4) can be partitioned into triply connected domains (= pants) by additional
circles. This is crucial for our aims because the Poincaré linear theta series will con-
verge absolutely and uniformly on compact subsets of the domain of discontinuity
of &.

The orbit manifold of the group & is the Riemann sphere with natural reflec-
tion Ju := u. The quotient manifold D/& is a compact algebraic curve M. of
genus g with hyperelliptic involution Ju := Gou and anticonformal involution J.
A holomorphic projection z(u): D — CP; = D/& with a pole at the distinguished
point us, that respects complex conjugation and preserves the orientation of the
real axis in the neighbourhood of u = u, is defined uniquely up to motions in ;.
We say that such a branched cover z(u) is compatible with the group &. Assign-
ing to the Kleinian group the branching points of z(u) (= the projections onto
the sphere of the fixed points of the rotations {G;}_,) we define a map from the
deformation space 9’; into the moduli space 9—(’; . We show in what follows that
this is the universal cover and the modular group acts on the deformation space
preserving the Kleinian group & (up to conjugation), but changing the system of
its generators.

€1 €3 €5 €1 €3 €5
ol o
AU Afi
Ay Ay Ay
67:' 68 69 [ — ) 610 67 CR  ereecerecees 69 » 610

€2 €4 €6 €2 €4 €6

(a) The labyrinth (e, A) for g =4,k =2,1={0,2,3} (b) A modification of a labyrinth

Figure 2

2.1.3. Labyrinth space. By a labyrinth (e, A) of type (g,k,i) we shall mean
a symmetric divisor e of type (g, k) supplemented with a system of disjoint cuts
A = (Ao, Aq,...,Ay) connecting pairwise points in e. The first group of cuts are
the projections of the k coreal ovals of the curve M(e), that is, the components
of the set {x € R : w?(x) < 0}. The second group is a system of smooth simple
arcs connecting complex conjugate points e that are invariant under the reflection
relative to R. The intersections with the real axis define an ordering of the cuts,
which we number from 0 to g from left to right (see Fig. 2(a)). The indices of the
cuts in the second group form the set i.

Two labyrinths (e, A) and (e, A’) are considered equivalent if there exists a
motion in A taking e to €’ and the paths A into paths continuously deformable into
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A’ so that the deformed paths and the point set €’ form a labyrinth at each instant.
We call the quotient of the set of labyrinths of type (g, k,i) by this equivalence
relation the labyrinth space L’;(i). Wiping away the cuts one obtains a natural
projection LK (i) — H.

The idea behind the introduction of labyrinths is as follows: the cuts of a
labyrinth transform the punctured half-plane H \ e into a simply connected set.
On the one hand this fixes generators of the free group 71 (H \ e) and on the other,
it allows one to trace the dynamics of the punctures.

2.2. Auxiliary results. The proof of the equivalence of the four spaces JN-C’; (e%),

Tk(e%), G%(i), L%(i) introduced above is based on their properties to be established
in this subsection.

2.2.1. Topology of the deformation space. The moduli ¢s,75 > 0, s=1,...,9,
form a global system of coordinates in the deformation space 9’; (i) and allow one
to identify it with a subdomain of R?9.

Lemma 2. The space 9’; (i) is the cell described by the system of inequalities

rs >0, s=1,2,...,9, (7)
Cs +1s < Gs+1(cs + rs) < Gs+2Gs+1(Cs + rs) < Gs+3Gs+2Gs+1(Cs + rs)
<< Gy1Gorg - 'Gs+2Gs+1(Cs + TS) < Cgr — T, (8)

where the indices s and s' in the last chain of inequalities answer one of the following
four descriptions:

(1) s and §', s < &', are successive indices in the set i’ \ {0};
(2) s =0 and s’ is the smallest index in '\ {0}; here one sets co + ¢ := 0;
(3) s is the greatest index ini'\ {0} and s =g +1,
here one sets ¢y — Tgr = Uoo;
(4) s=0and s =g+ 1 if the set i’ \ {0} is empty.

Proof. The rotation Gy, s € i/, has real fixed points and therefore the corresponding
circle Cy is uniquely defined. On the other hand, one can move the real diameter
of the circle Cs, s € i. We move all such diameters to the extreme right position
(see Fig. 1(b)). The system of inequalities (8) describes the ordering of the end-
points of the resulting diameters in the interval (0,us). One obtains a diameter
configuration, which can be uniquely recovered from their end-points, ranging over
the cell {0 < u1 < ug < -+ < uq < Uoo} Of dimension a := 2#{i’\ {0} } +#{i\{0}},
and the index set i. Prescribing a direction from the centre of the sth shifted
diameter to the fixed point of the rotation G, in the upper half-plane, s € i\ {0},
one obtains a point in the cell (0,7)%, 3 := #{i\ {0}}. We have thus constructed
a map of the space 9’; (i) onto a cell of dimension « + 3 = 2g which is continuous
and one-to-one.

2.2.2. The group of the branched cover z(u). Each labyrinth (e, A) defines
a representation ya from the fundamental group of the punctured sphere
m1(CPy \ e,00) into an abstract group & equal to the free product of g + 1
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groups of the second order with generators Go, G1, ..., G4. One assigns to a loop p
intersecting transversally the successive cuts A, As,, ..., As, the element of this
group

XA[/)] = Gs,Gs, -G,

A point {G5}7_, in the deformation space generates a labyrinth (e, A) in accordance
with the following rule: e := {z(fix G5)}?_, is the set of projections of the fixed
points of the generators; A := (zCo, xC1, . . ., xCy) is the projection of the boundary
of the fundamental domain. For 0 € i one must shift Cy away from a pole of z(u),
replacing it by the circles C. := {u : |eu + 1|2 = €2 + 1} with small ¢ > 0. The
kernel of the corresponding representation x, is the group of the cover z(u) ramified
over e and related to the element in question of the deformation space. The cover
group can be proved to be completely determined by the branching divisor e.

Lemma 3. The kernel of the representation xa: 71(CPy \ e,00) — & is indepen-
dent of the labyrinth A.

Proof. We shall show that ker x, is equal to the normal subgroup of 71 (CP; \ e, o)
generated by all elements of the following two kinds:

(a) a lasso making two rounds about the punctures and
(b) a loop A with mirror symmetry [A\] = 1 that is disjoint from the cuts A;,
iei.

The above-described subgroup is independent of one’s choice of the labyrinth (each
labyrinth contains the projections of the coreal ovals of the curve M(e)) and obvi-
ously lies in the kernel of x. We shall now demonstrate the reverse inclusion in the
case when the curve contains at least one coreal oval. The case k = 0 will require
obvious changes in the argument.

A cell decomposition of the Riemann sphere with 2g+2 vertices e, 2g+1 oriented
edges R, and one 2-cell gives us a system of free generators of the group w1 (CP; \ e):
one associates with each edge R the class of the loop p intersecting only this edge
from left to right. Such a cell decomposition can be constructed from the labyrinth
(e, A). The intervals A;, ¢ € V', give us k edges R, the lacunae between them (= the
projections of finite real ovals) give a further k£ — 1 edges. The lacking 2(g — k + 1)
edges can be obtained by a modification of the remaining arcs of the labyrinth A;,
i € i, in the neighbourhood of real ovals of the curve M after which they pass
through the punctures on the real axis (see Fig 2(b)).

On the generators related to the edges R the representation y acts as follows:

G, if R is a (modified) cut A,

1 if R is a lacuna.

xalpl = {

Since & is the free product of groups of rank 2, the kernel x, is the normal
subgroup generated by all possible elements [v], [p]?, [op], where the [y] correspond
to the k — 1 lacunae and the [p] correspond to the other 2g — k + 2 edges R. An
exhaustive search demonstrates that all these elements generating ker xx belong to
the above-described subgroup.

Naturally embedded in the fundamental group of the punctured sphere is the
group of the punctured upper hyperplane 71 (H\ e, 00). As in Lemma 3, the cuts in
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a labyrinth present a system of free generators coding the elements of that group: a
loop p in the upper hyperplane intersecting transversally the cuts A, Ag,, ..., Ag,
one after another can be expanded in the generators Ay, s € i, intersecting only the
cut A; from left to right:

[ = il s - Al 9)

where €; = 1 depending on the orientation of the local intersection of p with the
cut A,

Lemma 4. Let p C H\ e be a loop without self-intersections and with initial point
at co. Then the irreducible factorization of [p] in the generators (9) has no equal
letters following one another.

Proof. This is a result of discrete mathematics based on the idea of continuity.
The factorization depends only on the homotopy class of the loop p, therefore we
shall assume without loss of generality that p intersects the A transversally and at
finitely many points. Making finitely many transformations of Fig. 3(a) we replace p
by a homotopic loop without self-intersections with irreducible factorization (9). If
this representation contains two successive symbols [A;], then, up to orientation, we
are in the situation of Fig. 3(b). The point going along p must return to infinity,
but it cannot leave the shaded domain bounded by the loop itself and a piece of
the cut A;: otherwise the loop self-intersects or its factorization is reducible.

s Cs a Es
I 1
C p
q = N
= (P
’ (@ |
A, A, A, A

(a) The elimination of cancellations  (b) The infinite spiral p and the generator As

Figure 3

2.2.3. Modular group action on the group &. The natural action of homeo-
morphisms f € QC(H, e) on the fundamental group of the punctured sphere CP; \ e
gives rise to the action of the modular group Mod(e) := QC(H, e)/QC°(H, e) on
the group m1(CP; \ e,00)/ker xpo = &. In fact, the action of f on the fundamen-
tal group depends only on the homotopy class of f, and the characterization of
ker xa used in the proof of Lemma 3 demonstrates its stability with respect to this
action. For instance, for a smooth representative f of the homotopy class we have
f-ker xpo = ker xsa = ker xa. The next result shows that the representation from
the modular group into the automorphism group of & is faithful.

Theorem 1. The action of f € QC(H, e) on the group & is trivial if and only if
f€QC(H,e).
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Proof. Assume that f acts trivially on the group &. We shall show that the action
of f on the fundamental group 71 (CP; \ e,00) is also trivial. The fundamental
group of the punctured sphere is generated by three classes of loops. These are
loops in the punctured upper and lower half-planes and also loops in a sufficiently
narrow punctured neighbourhood of the real axis. The action of f on the last
class is trivial, and its actions on loops in the first two classes agree in view of the
mirror symmetry f(Z) = f(z). We shall therefore analyse the action of f on
the fundamental group 71 (H \ e, 00).

Each generator [A;] of the fundamental group of the punctured half-plane pro-
duced by a labyrinth contains a loop As without self-intersections such that its
image f)\; is also a simple loop. The representation ya takes the generator [Ay]
to an element G, s € i. Recall that the group & is freely generated by rank 2
groups, therefore it follows by Lemma 4 that xa[f)As] = G5 only in two cases:
[fAs] = [As] and [fAs] = [As]~!. The second case cannot occur because f respects
the orientation.

Having established that the action of f on the fundamental group of the punc-
tured Riemann sphere is trivial we use a construction due to Ahlfors [5], [8]. Let
H — CP; \ e be the universal cover. A lift f: H — H of f onto the covering
space starting from an arbitrary point in the inverse image of the point at infinity
commutes with covering transformations because the action of f on the fundamen-
tal group of the base is identical. Let f;(u) be a point partitioning in the ratio
t:(1—t),te0,1], the non-Euclidean interval [f(u), u] in the Lobachevskii plane.
Lowering the map f;(u) to the base we obtain a homotopy of CP; \ e stabilizing
infinity and connecting f with the identity map.

2.2.4. Equivalence of labyrinths.

Theorem 2. Two labyrinths (e,A) and (e, ") are equivalent if and only if the
induced representations xa, xa : 71(CPy \ e,00) — & are the same.

Proof. During a continuous deformation of the labyrinth A the representations xa
into the discrete group & must remain the same, therefore this representation is the
same on equivalent labyrinths. Conversely, for xo = xas we shall explicitly describe
the deformation A’ — A. In view of the mirror symmetry, such a deformation is
uniquely defined by the motion of the labyrinth in the upper half-plane.

We start with the following preliminary observation: the systems of free gen-
erators (= the alphabets) [X], i € i(A), [As], s € i(A), of the fundamental group
m1(H \ e, 00) related to the labyrinths A’ and A are the same. For consider a sim-
ple loop representing a class [A}]. Its irreducible factorization in the generators of
the second system [A] = [As;]°2[As,]%2 - - - [As,]¥" contains no repeating letters by
Lemma 4. Accordingly, the word Gy, Gs, - Gs, =: xa([M]) = xa([N)]) := G;
is irreducible. Such an equality in the group & is possible if [\}] = [X\;]*!. The
classes [A]] and [)\;] are conjugate in the fundamental group of the punctured
hyperplane because the corresponding loops go counterclockwise about the same
puncture. The elements [);] and [\;]~! cannot be conjugate in the freely
generated groups, therefore [A;] = [XA;]. In particular, both labyrinths are of the
same type: i(A) = i(A’). After the obvious deformation of A’ we can assume that
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_ A/,- A € AQ
N 11\
, H
: Ail[;\\ : A;- :
~ [
A A;

(a) Deformation of the labyrinth A’  (b) Expansion of the loop p := 8(H \ As) in generators

Figure 4

the labyrinths are equal on the real axis, while in the upper half-plane they intersect
transversally at finitely many points.

Assume that Ag N A} contains points z; and x2 in the upper half-plane with
opposite orientation of the intersections and the segment of the arc A between them
is disjoint from the labyrinth A’. The segments A, and A} cut by the points z; and
T2 bound a cell in H disjoint from the labyrinth A’ and, in particular, containing no
punctures. This cell can be retracted — we depict the corresponding deformation
in the background of Fig 4(a). We consider also the limiting case when one of the
points x1, T is an end-point of A;. Each of these deformations of A’ reduces
the number of its intersections with the labyrinth A. Hence in finitely many steps
we arrive at an equivalent labyrinth of the above-described structure (still denoted
by A’) disjoint from A. We claim that the intersection of the two labyrinths in the
upper half-plane now contains only points in e. This actually means that A; and
AL, i €1, bound in H a cell containing no points from either labyrinth. Retracting
such cells we obtain a deformation A’ — A.

Assume now that A \ e intersects the arcs A] , A ,..., A} in the upper half-
plane one after another, as in Fig. 4(b). We factor the loop p going along the
boundary of H\ Ay in the two systems of representatives related to the labyrinths
A and A’. Setting equal these expressions and taking account of the equality of
the alphabets [A]] = [\, ¢ € i, we obtain a commutation relation in the freely
generated group 71 (H \ e):

R B e L e D e LY e Y e R T P W P (10)

where €; = £1 depending on the orientation of the intersection of A; and A;j. The
word on the right-hand side of (10) is irreducible, for otherwise we would be able to
make a deformation of the labyrinth A’ described in the previous paragraph. Hence
this word consists of one letter [As] and the labyrinth A’ does not intersect the arc
Ag NH at its interior points.

2.2.5. Quasiconformal deformation. The idea of the quasiconformal deforma-
tion of a group is due to Ahlfors and Bers [8], [9]; we merely adapt it to our aims.
To start with, we fix an element {G9}7_ of the deformation space G (i) generating
the Kleinian group &° and a projection 2°(u): D(&°) — CP; compatible with this
group.
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Construction. Let f(x) be a quasiconformal motion of the plane of the complex
variable x. We lift its Beltrami differential

T LG
de = fpdx

()
to the domain of discontinuity D(®°) by means of the covering map compatible

with the group. We extend the new differential

i) 2 u<m°<u>>%8

by zero to the limit set of the group 0 which has measure zero. Consider a
quasiconformal homeomorphism f(u) of the Riemann sphere satisfying the Beltrami
equation

0 ~ ~ 0

2 flu) = .z 11

2 Flu) = iw) - 5-Fi(w) (1)
and fixing three points: two fixed points of the generator Gy and the distinguished

~du N .
point %e.. The Beltrami differential fi(u)— is &%-invariant by construction, there-

fore the uniqueness theorem for quasiconformal homeomorphisms states that the
homeomorphisms f(u) and f(Gu) differ by a conformal motion of the Riemann
sphere:

Glof=FoG, Ge®’, GfePSLy(C). (12)

The group &7 := ]?@0]?—1 generated by such motions is isomorphic to &9, acts
discontinuously in the domain D(&7) := fD(6°), and is called the quasiconformal
deformation of the group &° generated by the element f € QC(H). The distin-
guished system of generators {G%}Y_, of & is taken to a distinguished system of
generators {Gf := FGOf119_,.

We now formulate two technical results underlining the natural character of the
construction of the quasiconformal deformation. They are an easy consequence of
the uniqueness of the normalized quasiconformal map with fixed Beltrami coeffi-
cient [8].

Lemma 5. (1) If f € QC(H) deforms the group &° into &7, then the distinguished
holomorphic projection zf (u): D(&F) — CPy with normalization x¥ (u) := fox®(u),
u € {fix Go, ueo }, completes the diagram (a) to a commutative diagram:

D(®Y) —L 5 D& D(BY) —" s D(®h) —L 5 D&M
(a) lmo le , (b) lxo lxh leh . (13)
ce, —L - cp, ce, —"» cp, L cp

(2) The deformation of the group &° by the composite fh of two maps can be
performed in two steps: first, by means of h one deforms the group ®° into ®" (the
left square in (b)) and uses it as the distinguished group for the second deformation,
by means of f (the right square in (b)). The deforming homeomorphism of the
composite map fh is equal to f?t and the required deformation of the group is
&/ = feh 1,
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Remark. The second result can be understood as follows. Quasiconformal maps
act on the left on pairs consisting of a system of generators of a Kleinian group and
a holomorphic projection onto the sphere: f-({G%}_,, %) := ({Gf}s _o> 7). This

action is associative: (fh)-({G9}_y, 2°) = f-({G2}I_y, a") =: f-(h-({G}I_,, 20)).

2.3. Equivalence of the representations. The equivalence of the four defini-
tions of the universal cover of the moduli space means the existence of (compatible)
continuous bijections between the topological spaces J-Ck ‘J'k 9’“ Lk introduced
above. In the following three subsections we shall successwely estabhsh homeomor-
phisms: between the Teichmiiller space and the deformation space of the Kleinian
group, between the Teichmiiller space and the universal cover of the moduli space,
between the labyrinth space and the deformation space of the group. We now
describe these correspondences at an intuitive level.

‘J'g > L’;. A smooth representative f of a Teichmiiller class takes the distinguished
labyrinth (€%, A°) to a labyrinth (fe®, fA°) of the same type. Two labyrinths of
the same type can always be transformed into one another by a suitable map f,
which is unique up to an isotopy of the punctured plane.

JN-C’; (€%) L’;. The universal cover of the moduli space is the set of the branching
divisors e together with the history of their motion from the distinguished divisor e°.
One can recover this history by treating cuts in the labyrinth as the traces left by
points in the divisor in their motion. Conversely, each path in the moduli space
can be deformed so that the points in the divisor € moving in the complex plane
do not intersect their traces. The resulting picture in the plane can be completed
to a labyrinth.

2.3.1. The isomorphy of ‘.Tk and 9"’ We fix an element {G%}Y_, in the defor-
mation space 9’;( i) and a compatlble cover x°(u). The following result is typical
for the theory of Teichmiiller spaces [9], [5].

Theorem 3. Quasiconformal deformations bring about a homeomorphism between
Gk (i) and the Teichmiiller space T4 (e®), where € := {z°(fix G2)}4_, are the branch-
ing points of the cover x°(u).

The proof of Theorem 3 splits naturally into several steps.

Lemma 6. For f € QC(H) the quasiconformal deformation {GL}?_, of the dis-
tinguished element lies in the same space G%(i). The cover x¥(u) generated by f is
compatible with the deformed group &/.

Proof. The following objects are mirror-symmetric relative to the real axis: the Bel-
trami coefficient pu(z) = u(Z) of the function f, the regular cover z°(u) = z9(u), and
the normalization set: (£%,00) if 0 € i or (0,1,00)if 0 € V. The uniqueness theorem

for the normalized quasiconformal homeomorphism ensures that f(u) € QC(H).
Hence the new generators GJ := ngf_l, s=0,1,...,9, are real. The deforma-
tion of Gy is always trivial because fstabilizes its fixed points. We claim that the
deformations G of the other rotations satisfy the geometric condition in §2.1.2.
The motion f fixes the end-points of the interval (0,us). In fact, if 0 € i, then
£(0) = fGo(o0) = Gf f(00) = 0. Hence f takes the real diameters of the circles
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C4,Cs,...,C4 into disjoint closed subintervals of (0, us), and we construct new
circles C’{ ,Cg . .,Cg with these subintervals as diameters. The generator G¥,
s = 1,...,g, maps the circle C into itself, but reverses the orientation, there-
fore G has two fixed points on Cf. They are real if s € i’ and complex conjugate
if s € i. Hence the new rotations Gf, s = 0,..., g, satisfy the above-mentioned
geometric condition and define an element of the same deformation space GF(i).

The deformation f gives rise to the branched cover zf(u) with pole at u =
Uso in accordance with the normalization. It is symmetric relative to the real
axis and respects the orientation of the real axis in the neighbourhood of the pole
U = Uso because the other three maps in the commutative diagram (13)(a) have
this property.

Lemma 7. Two maps in QC(H) deform the distinguished element in the same
fashion if and only if they belong to the same class in the Teichmaiiller space ‘J';f (e%).

Proof. (1) We start with a special case of the lemma when one of the quasiconformal
maps is identical.

1(a) If f € A - QC°(H, e°), then f does not deform the generators of the
group &°. The deformation of the distinguished group by f € QC(H,e°) can
in fact be explicitly found. Up to normalization it is equal to the action of the
modular group and, in particular, it is trivial for f € QC°(H, e®). The left action
of the affine group on f preserves the Beltrami coefficient of the map and therefore
has no effect on the deformation f.

Making punctures in the domain D of discontinuity of the distinguished group

at the fixed points of the elliptic transformations we obtain a space D with a free
action of the covering transformation group ®°. We lift the map f € QC(H, €°) to

an automorphism of the covering space D from the distinguished point wqe:

(o) (o)

_f

= [E (14)

(CIPl \eo % (CIPl \eo

The resulting map f can be defined by continuity at the punctures in the domain
of discontinuity and on the limit set of the distinguished group with the help of the
equivariance condition fG = (f- G)f, G, (f-G) € 8°. The action of G — f -G
on the covering transformation group &° is induced by the action of f on the fun-
damental group of the punctured plane CP; \ e°; see §2.2.3. The homeomorphism
f : CP; — CPy is quasiconformal and its Beltrami coefficient is 1. Hence f differs
from f in (13)(a) only by normalization. Calculating f at the fixed points of G
we obtain

fz ozf, Gf = ngf_l =a(f- Gg)oz_l, o€ Qlf, (15)

where the affine motion o = id if 0 € ', while for 0 € i it is defined by the condition
af(+i) == £i.
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1(b) If f does not deform the generators of ®°, then f € A - QC°(H, e®). Let
& = B in the deformation diagram (13)(a); then zf = az® for some o € A
Multiplying f by an affine motion on the left we can assume that f € QC(H, e?)
and 7 = 2. Then the deformation of the generators of the distinguished group
is defined by formula (15) for o = id. By Theorem 1 it follows from the equalities
f+-G%=GY that f € QCO(H, e?).

(2) We reduce the general case of the lemma to the special case of part (1).
Combining the deformation diagrams of the maps f1, fo € QC(H) we obtain

D(B1) <f—1 D(BY) L (&/2)

lmh l’”o lmfz - (16)

(CIPl (f—l (CIPl L (CIPl

By Lemma 5 on composite deformations the deformations of the generators of the
distinguished group ®° are equal if and only if the map fof; 1 does not deform
the generators of /1. By the special case considered above this can occur if and
only if fof;* € A - QCO(H, f1€°), which is equivalent to the result of the lemma
in the general case: fo € A - f1 - QC°(H, e?).

Proof of Theorem 3. We showed in Lemmas 6 and 7 that the map T%(e%) — Gk (i)
is well defined and injective; we now discuss its surjectivity. One can find a quasi-
conformal map f(u) of the standard fundamental domain R of the distinguished
element of G¥(i) onto the fundamental domain of an arbitrary element of the same

space that

(a) commutes with the reflection Ju := u;

(b) respects the identifications at the boundary and

(c) fixes the three points fix Gy, Ueo.
One can construct such a map explicitly, but the corresponding description is
lengthy. Extending ]7 by means of equivariance condition (12) to the whole of the
Riemann sphere one obtains the map f in the bases in the diagram (13)(a). By
the uniqueness of the normalized quasiconformal map f deforms the distinguished
element into the prescribed one.

The continuity of the bijection ‘J'g > 9’; with respect to the Teichmiiller metric
in ‘J'g and the topology of the cell 9’; follows by the construction of the direct and the
inverse maps; see also formula (17) for infinitesimal quasiconformal transformations.

2.3.2. Isomorphy between ‘J'_,’; and fJA:C'; We shall identify the orbit manifold of
the modular group with the moduli space.

Lemma 8. The spaces Th(e°)/ Mod(e°) and H% are homeomorphic.

Proof. We assign to the map f € QC(H) the symmetric divisor fe®. This defines
an injection of the orbit space of the modular group acting on the Teichmuller space
into the moduli space. We shall show that this map is

(1) continuous in the natural topology and
(2) has a continuous inverse in the entire moduli space.

This will prove the homomorphy of the two spaces.
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(1) For local coordinate variables in the moduli space in the neighbourhood of the
distinguished point e® one can take the independent real and imaginary parts of
the variable points in the divisor {e,...,ea4, —1,1} =: e ~ €° of the type (g, k):
we have fixed the pair of points +1 in the divisor assuming that £ > 0. In the orbit
space of the modular group A \ QC(H)/QC(H,e’) one defines the Teichmuller
metric 1t (@)

. HA\T )|l 0o
AL D= e B T @l
where the infimum is taken over the representatives fi € [f],h1 € [h] of the
classes, p(z) is the Beltrami coefficient of the map fih", the norm ||u(z)||e is
the essential maximum of u(x) in the plane. We can verify that the embedding
T%(e%)/ Mod(e®) — H% is continuous in the neighbourhood of [id]; the general case
follows by replacing the distinguished divisor €®. There exists a formula for the
‘principal part’ of the quasiconformal map f(z) with small Beltrami coefficient p(z)
and fixed points +1, oo [5], [6], [8], [9]:

f(e)—e:i ,u(a:)eQ_l dx N\ dT

27 Je 2—-1 z—e

+O(lul%) (17)

where the remainder term has a uniform estimate on compact subsets of the plane.
It is clear from (17) that the classes [f] close to [id] in the Teichmiiller metric only
slightly deform the divisor e°.

(2) Let o(x) be an infinitely smooth cut-off function with support small by
comparison with the distance between the points in e, equal to 1 in a (com-
plex) neighbourhood of z = 0, and conjugation invariant: o(Z) = o(z). In a
small neighbourhood of the distinguished point €° in the moduli space we define
a local section of the projection QC(H) — 3}

fle,z) :=x+ Z(es —ed)o(z —€2), xz € C. (18)

The map (18) is a local inversion of our embedding T¥(e?)/Mod(e”) — H¥ and
it is continuous. Similar sections can be constructed in the neighbourhood of each
point in the moduli space. Taking composites one defines a continuous inverse map
HE — T%(e%)/Mod(e) in the neighbourhood of an arbitrary prescribed point.

Theorem 4. (i) The spaces T4 (e°) and JN-C’; (€%) are homeomorphic.
(ii) the groups Mod(e®) and Bry_j11 are isomorphic.

Proof. We have just shown that the moduli space 9—(’; is the quotient of ‘J'g(eo)
by the modular group action. We claim that Mod(e®) acts (1) freely and (2) dis-
continuously in the Teichmiiller space and therefore the projection ‘J'g () — J-C’;
is a cover. This is a universal cover because the space T¥(-) =2 G¥(-) is a cell by
Lemma 2. Accordingly, the covering transformation group Mod(e) of the cover is
isomorphic to the fundamental group of the moduli space, which by Lemma 1
is isomorphic to the braid group Brg_j1.

(1) For a representative h € QC(H, e°) of the modular group assume that there
exists a motion f € QC(H) such that fh € afQCC°(H,e°) for some a € Af.
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Then afe® = fe’ and since A acts freely on the divisor set, it follows that o = id
and therefore h € QCP°(H,e"). Thus, h represents the identity element of the
modular group.

(2) Transformations in the modular group are isometries of the Teichmiiller
space, therefore the discontinuity of the action of Mod(e®) follows from the fact
that it has discrete orbits. We recall from §2.1.1 that each orbit of the modular
group can, by replacing the distinguished divisor e°, be isometrically transformed
into an orbit passing through the distinguished point [id] in the Teichmiiller space.
Thus, let h, € QC(H, e") be a sequence with infinitesimally small deformations of
the generators of the distinguished group: G*» — G%, s =0,...,g.

(2a) If 0 € i/, then the deformation of generators calculated in (15) is as follows:
G" = h, - G%. In the discontinuity domain of the distinguished group we select
a point u with trivial isotropy group (for instance, u = us). The convergence
Gh"u — GO shows that h,, - G = GY starting from some n. By Theorem 1 the
trivial action of h, on the group means that h, represents the unit element of
the modular group.

(2b) If 0 € i, then the deformation of the generators is G"» = a,(h, - G%)a; !,
oy, € AT The distinguished group contains an element invariant under all the h,,; it
corresponds to the class of the loop [R+40] in the fundamental group 71 (CP; \ e, co)
and is equal to G* =[] sci GY, where the product is ordered in increasing order of
the indices. One can deduce from the convergence o, G*a;,,; ' — G* that a,, — id.
The rest of the proof proceeds as in part (2a) of the proof.

The identification of the Teichmiiller space with the universal cover of the moduli
space and the deformation space of the special Kleinian group gives rise to two local
coordinate charts in ‘J';f . First, we have the global coordinate variables (cs,75)7_;
in 9’; ranging over a cell. Second, we have systems of coordinates in 9—(’; related to
the branch points. The following result establishes a connection between the two

systems of coordinates.

Theorem 5. The map JN-C’;(eO) — Gk(i) is real analytic in local coordinates. Its
Jacobi matriz is non-degenerate with entries effectively calculated with the use of
quadratic Poincaré series.

Proof. To express our map in terms of local variables one must deform the genera-
tors of the distinguished group by means of the local section (18) of the projection
in Lemma 8. It is sufficient to study the map in the neighbourhood of the distin-
guished divisor €’ and, if necessary, to replace the distinguished divisor together
with the distinguished group with the help of Lemma 5 (§2) on composite defor-
mations. For a change let 0 € i, that is, assume that the distinguished divisor
e® contains complex conjugate points, for instance, +i. For local coordinate vari-
ables in the neighbourhood of the distinguished point in the moduli space 9—(’;
we shall take the (independent) real and imaginary parts of the complex points
e1,€a,...,ea, which together with {4i} form a simple branching divisor e ~ €°.
The fixed points of the generators of the distinguished group deformed by f(e, )

define a map {e,}2%, — {cs,7s}9_, in a small complez neighbourhood of {€9}%%,:
cs(e) £ rg(e), sei,

= fixGS = fle, fix G° =1,....q. 19
cs(e) £ irs(e), sei,} xGy = flefixGy), s=1,...9.  (19)
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Corresponding to symmetric divisors e in the 2g-dimensional complex neighbour-
hood there are a real 2g-plane and the real moduli ¢;, r5 > 0. We claim that (1) the
complex map {e,}°%, — {cs,7s}?_, is holomorphic, (2) its Jacobi matrix can be
explicitly calculated and (3) it is non-singular.

(1) The Beltrami coefficient u(e, z) of the function (18) depends holomorphically
in Lo (C) on the components of e. The dependence on e of the coefficient

(e, u) = ule, ﬂw%

is also holomorphic; the latter is now defined in the domain of discontinuity D(&?).
By a well-known result [8] the map f(e, - ) depends analytically on the parameters e.
In particular, all functions v(e) := f(e,v), v € {fix GY}9_, are holomorphic; the
functions c;(e) and r4(e) are linear combinations of them.

(2) The differentials of the functions v(e) can be calculated by the formula for
an infinitesimal deformation [8], [5], in which = means equality to within terms of

order O(Ziil les — €3?):

_ 241 duNdu
2w —u(e®)) 2 v
mi(v(e) —v(e”)) /(C,u(e,u)u2 1 uo

s (dG(u)/du)? v* +1 —
_/yu(e,u)[z Gu2 1 Gu—u du A du

Ge®o
P2g 1( )

=@ +1) [ pte.n) = do n e (20)

In the next to last integral the quadratic Poincaré series defines on the Riemann
sphere 2°(R) a meromorphic quadratic differential w=2Pyg, ;(z) (dx)* dependent
on the point v € {ﬁXGS}‘ZZl as a parameter. Its singularities are simple poles,
which can be placed at points in the divisor e® and at infinity. Such quadratic
differentials (of finite area [5]) form a complex vector space of dimension 2g with
basis

dz)?

Q dz)? = —(
(@)= T T e =)
We expand our quadratic differential w=2Py, ,(x) (dx)? with respect to the basis
(21) with coefficients a? := Py, (e?) H?ild#s(eg—eg)_l and continue equality (20)
as follows:

(v? +1) / emZa”Q Ydx A dx
29

;(UZH)/CSZZI@ZQ Z eNoz(z — €)dz A dz
d(—szzgla;’ﬁs(m) m—e)dm)

s=1,...,2g. (21)

2g

— 1)) (e — eg)/

=1 supp o;(m—e?)

1
_QWZZG v + es —e2).
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One can recover the differentials of the functions cs;(e) and rs(e) from these
expressions.

(3) Assume that the differential of the map {e,}%, — {cs,rs}s 1 is singular
at €°; then there exists a non-trivial tangent vector £ := $2¢ i21€j0/0ej such that
for e = €,

Ecs(e) = &rs(e) =0, s=1,2,...,9.
We now differentiate the condition of the equivariance of f(e, )
Gl o fle,u) = fle,u) oG, Ge&’ Gfee/

in the direction of . We see that at the point e’ under consideration the velocity of
the deformation f(e, ) defines a & -invariant inverse differential & f(e?, w)(du)~*
We claim that all the coefficients €5 of the vector £ vanish. For a proof we lift the
basis elements in (21) to D(B°): Q,(z°(u))(dz®(u))? =: Q,(u)(du)?. The product
of the quadratic and the inverse differential is a smooth ®C-invariant differential
Qu(u) - ££(€°, u) du on D(B°), therefore

= Qu(u) - €£(°, u) du = d(Q-¢fd
0= [ oo Bel e du= [ a(@, - a)

- —/ 0y - (E])wdun du
R(80)

(differentiations of fwith respect to e; and with respect to the variable u

are interchangeable)

- Nung'U—mu—eQ@u Tu
= /y(@o)ﬁs( )];J z((u) ])d:(u)d Ad

/ ZEJUQC — ) dx Ndx
_ ZEJ / (U(@)o( — &) de)

supp oz(z—ed

. Es
= —27'('125] ]R_GCSQ ( ) —QWZW.

Jj=1 7

Since the quantity €? is finite, it follows that e5 = 0.

2.3.3. Isomorphy of L’; and 9’;. In finding the group of the branched cover
x(u) in §2.2.2 we already assigned to an element of the deformation space a special
labyrinth, the projection of the boundary of the fundamental domain defined by
this element. The inversion of this correspondence is the basis of the following
result.

Theorem 6. The spaces L% (i) and G (i) are homeomorphic.

Proof. We shall establish a 1-1 correspondence between these spaces.
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(1) The map Gk (i) — Lk(i). Corresponding to each element of the deformation
space 9’; (i) is a system of circles Cy, C1, . . ., Cy bounding the fundamental domain R
generated by this element of the Kleinian group. The pole us, of the cover z(u)
compatible with the group lies in R if 0 € i’. For 0 € i this can be attained by the
replacement of the ‘infinitely large’ circle Cy by a ‘very large’ circle C; := {u € C :
leu + 1|2 = €2 + 1} with small ¢ > 0. The projection z(u) takes the boundary of
the fundamental domain to a labyrinth A of type (g, k,1), which does not change
its class after admissible perturbations of the circles C;, 7 € i.

(2) The map L%(i) — G%(i). For definiteness let 0 € i; there are fewer technical
details in this case. Corresponding to each divisor e of type (g, k) is an orbit of the
modular group acting in §¥(i). All points in this orbit are associated with the same

compatible cover x(u): (D, us) — (CP; \ €,00). By Lemma 3 the group of this
cover is equal to the kernel of each representation y, from the fundamental group
CP; \ e into the abstract group & := (G5, s € iU’ : G2 = 1). Fixing a labyrinth
(e, A) one can therefore realize elements of ® as covering transformations of z(u),
that is, linear fractional maps in PGLy(R). For instance, Go(u) = —u (= the unique
rotation of order 2 with fixed points 0,00). We shall show that the realization of
the remaining generators G1, G, .. ., G4 satisfies the geometric condition in §2.1.2.

The fundamental group of the Riemann sphere cut along the labyrinth A lies in
the kernel of xa by the definition of the representation. Hence we obtain on CP; \ A
a well-defined map u(z) inverse to z(u), normalized by the condition u(00) = o,
and inheriting the mirror symmetry u(xz) = u(Z). This map blows up the cuts in
the labyrinth to smoothly embedded circles symmetrically threaded on the real axis

in the same order as the cuts Ag, Aq, ..., Ay. Hence
0=RN(ulo) <RNuA) < - <RN(uly) < teo. (22)
Each set RN (ud;), i = 1,...,g, consists of two points, mapped one into another

by G;(u) if i € i or fixed by it if ¢ € V. The circle C; with centre on R passing
through the points R N (uA;) contains the fixed points of the rotation G;(u) and
by inequality (22) is disjoint from the other circles of this kind. We see that the
system of generators Gy, G1,...,G, defines an element of the deformation space
SHOR

The maps in parts (1) and (2) of the proof are inverse to each other. The
labyrinth {As}Y_, and the labyrinth {zC;}_, obtained from it by means of the
composite L¥ (i) — G%(i) — LE(i) have the same representation x, by construction.
Hence by Theorem 2 they belong to the same class of the labyrinth space. The
bijection LF(i) <+ G%(i) just constructed is continuous by Theorem 5, since the
local coordinate variables in the labyrinth space were borrowed from the moduli
space J-C’;.

§ 3. Calculations in the moduli space

An effective calculation of extremal polynomials requires, first of all, the solution
of Abel’s equations (5) defined on the universal cover of the moduli space. These
equations have been thoroughly studied in [1]; we present here only a brief survey.

On each curve M (e) of the moduli space there exists a unique differential of the
third kind dnjs with purely imaginary periods and simple poles at infinity such that
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Resdnar|oo, = F1. This differential is real: Jdny = dnay, therefore the integrals
of dnas over the even cycles Ct := JC* on M vanish. The integrals of dnys over
the odd cycles C~ := —JC~ define locally the period map onto 9—(’; . As usual, the
moduli space is multiply connected and the period map cannot be continued to a
global one, since going along a non-trivial cycle in 9—(’; results in a change of the
basis in the odd homology lattice H; (M, Z) := {C € H,(M,Z) : C = —JC}. This
problem can be eliminated by a transition to the universal cover of the moduli space.
In its labyrinth model L5 (i) each element (e, A) possesses a distinguished basis in the
lattice H; (M,Z). Namely, the cycle C corresponds to counterclockwise motion
along the bank of the cut A, on the upper leaf M(e). The left-hand sides of the
equalities

Z, sci,

23
27, s € i, (23)

—z'/ an=27r%, s=0,1,...,9, mse{
cs n

define the period map II: L’;(i) — R9*T1, whose values lie in a hyperplane: the
integral of dnas over the cycle Cy + C +---+ C " is always 2mi. The period map
is a submersion in RY [1] with a known range [3].

The points M of the moduli space associated with real polynomials of degree n
fill real analytic submanifolds of dimension g that are the inverse image, under the
period map, of the lattice defined by the right-hand side of equations (23). These
equations are equivalent to the existence on M of a real meromorphic (Akhiezer)
function with divisor n(co_ — oo ):

P, (z,w) :=exp (n /((W) an> . (24)

e,0)

Its composite with the Zhukovskii function is the extremal polynomial:

Po(z) = %(ﬁn(m,w) 4 %) (25)

For an effective solution of Abel’s equations (23) and the subsequent recovery
of the polynomial by formulae (24), (25) we uniformize the curves M € 9—(’; by
the Schottky groups & generated by elements of the deformation space 9’; (i) with
appropriate set i. As is known [10], [4], [11], the linear theta-series of Poincaré
of such groups converge absolutely and uniformly on compact subsets of the dis-
continuity domain D. Summing these series one obtains Abelian differentials on
curves and, in particular, dnys. After identifying the labyrinth space L’;(i) and the
deformation space 9’; (i) of the special Kleinian groups the cycles C; ', C5 ,...,Cy
related to the labyrinth are taken to the circles Ci, Cs,...,Cy bounding the fun-
damental domain of the group and the poles ooy, 00_ of the differential dnys are
taken to the points us, and Gou, respectively. Recall that us = 1 for 0 € i’ and
Uso = 00 for 0 € 1.

Abel’s equations (23) and the Chebyshev representation (24), (25) can be writ-
ten also in terms of the global coordinate variables (cs,7.)7_; in the space Gh(i).
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Thereupon one comes across the problem of navigation in the moduli space. From
an arbitrary point 9’; (i) one must descend to the smooth submanifold described by
Abel’s equations and moving along it, find the curve M corresponding to the poly-
nomial P, () with prescribed constraints. The variational formulae of § 3.2 enable
one to obtain a local solution of the navigation problem.

3.1. Function theory in the Schottky model. One obtains an Abelian differ-
ential of the 3rd kind dn., with poles at points z and y in the fundamental domain
R(G) by averaging over the group & of the differential on the sphere [11]:

Ay (u) = Z{Sul—z N Sul—y}ds(u) - Z{u—lSZ N u—l.S'y}dU; (26)

Se6 Se6

the two sums are termwise equal in view of the infinitesimal form of the cross ratio
identity. Differentiating (26) with respect to the position of the pole z we obtain
Abelian differentials of the second kind:

dwpmz(u) == D dn,, (u) = m! Z (Su — 2)"™ "t dS(u), m=1,2.... (27)
Se6

One obtains a holomorphic differential by placing the poles z and y in the same
orbit of the group & and isolating in (26) a telescopic sum:

d¢j(u) := dns,yy = Z {(u - SO‘J’)_I —(u— Sﬁj)_l} du

Se&|(S))
= > {Su—oa)t = (Su—8)""}dS(), j=1,....g
5€(5;)|6 (28)

summation proceeds over representatives of cosets by the subgroup (S;) of & gener-
ated by the element S;; a; and (3; are the attracting and the repelling fixed points
of S;, respectively. Integrating the series (26) and (27) termwise over the circles
{Cs}?_; we find the normalization of the differential under consideration:

/ dnzy =0, /
CS C

The so-called Schottky functions [7], [11], the exponentials of the integrals of the
series (26) and (28), can be effectively calculated

w u—Sz v-—8z
(U’7U;Z7y) = eXp/ dnzy: H U—Sy : ’U—Sy, (30)

dwpm, =0, / d¢; = 2mids;, z,y€R(6), s,j7=1,...,9.
Cs (29)

s

v Se6
“ u— Sa; )
E;(u) ::exp/ d¢; = H u—isﬁj-’ i=1,...,9, (31)
o0 5e6|(S;) J

and are transformed by well-known formulae under the action of &:
E;(2)

E;(y)’
Es(Sju) = Es(u)Es;; (33)

(Sju,v; 2,y) = (u,v; 2,y)
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Ey;, the exponential of the period of the holomorphic differential, has the represen-
tation

Sa; —a; SB; — .
Elj :E]l: H Sa]-—ﬁ : S/BJ —B y l,]zl,...,g, (34)
se(silel(syy 0 P P T
here we take the product over two-sided cosets in the group & and for j = [
the coeflicient 0/0c0 corresponding to S = 1 is replaced by the dilation coefficient
)\l = Sl(oq).

A non-trivial meromorphic function on the orbit manifold of the group & can
be expressed in terms of the Schottky function.

Lemma 9. Let F(u) be an automorphic function with divisor ZgiglF (zs — ys) in
the fundamental domain of the group &. Then the following representation holds:

deg F

F(u) = const H (u, *; 25, Ys) H E7 (u), (35)

where my € 7 is the increment of (2mi) = log F(u) over the cycle Cs. The deriva-
tives of the automorphic function F(u) with respect to the independent variable are
recursively calculated by the formula

Dy P () = g (1) - ztpa)- (dgF e (1) gmsg‘sw)) @0

dnzy (u) and és (u) : dCCsl(U)

The series in N,y (u) = 7 = == for the D! are absolutely
u u

convergent.

Remark. The constraints imposed by Abel’s theorem on the divisor of F' are
precisely the conditions for the automorphy of the right-hand side of (35).

Proof. We expand the differential dF/F in a sum of third-kind differentials and
holomorphic differentials:

deg F g

dF
LIRS SRS yes
s=1 s=1
Integrating to u and exponentiating we arrive at (35). Differentiating repeatedly

the composite function
“dF
F(u) = —
(u) = exp ( /* 7 )

by the binomial formula we obtain (36). Effective expressions for the derivatives of
the differentials in the last formula can be derived from Riemann’s relations

z z S;w
Nay(u) = Du/ ANy = / dw1y, ¢i(u) = / dwy, for all w € D(G).
y y

w
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Differentiating the required number of times with respect to the parameter under
the integral sign and integrating termwise we obtain series absolutely convergent
in D(6):

unzy =1 Z{ Sy —u) =1 (Sz — u)_l_l}, (37)
Se6
Diéiw) =10 > {(S8 —u) ™'t — (Say; —u) "1} (38)

Se&|[(S5)

2. Variations of Abelian integrals. The Abelian integrals in the prescribed
limits and their periods are functions of the point in the deformation space 9’; (i).
For instance, the expressions

w w w w w
/ dnzy> / dwm, / dwmz, / dCs> / dCs> s, =1,2,...,9,
v v Sjw v S;w

(39)
with fixed points z,y, v,w in the fundamental domain of a Schottky group &
depend on the modules {cs,75}9_;. A small perturbation {dcs, ors}7_; of the mod-
uli results in small perturbations of the matrices G, € PGL4(R) corresponding to
the generators of the group &:

PN Hl 2(:8

cs Fr?—c2 5G, =
) * 0

1 —Cs

0 27“8

G - 0

ors+o, s=1,...,9;
(40)

st |

the sign + depends on the one of the sets, i or i/, containing the index s;

g
0:= 0(2 |0cs| + |5r8|>.
s=1

Theorem 7. The variations of the functions (39) are described by the formulae

6/dn

5/“’ N= o Z/ [ M(u) - 6G - G du + o; (42)

Sjw

5 Z / W) (w) tr[M(u) - 6G - G5V du + o, (41)
iy

all the objects on the right-hand sides of these equalities relate to the unperturbed
group, o := o(37_ |6cs| + |67s]), dn(u) := n(u)du is one of the differentials
dnzy, dCs, and dwp,,, and M(u) := (u,1)* - (=1, u) € sla(C) is the Hejhal matriz.

Proof. In the special case i = & the proof is presented in [4]; however, it can be
literally transferred to the case of general Schottky groups.

Remark. The use of quadrature formulae for the calculation of the right-hand sides
in (41) and (42) is inefficient because it requires summation of Poincaré series at
many points. A trick allowing one to calculate these integrals by summing series
only at 2g — 1 points is described in [4].

3.3. Parametric calculation of polynomials. For an illustration of Lemma 9
we find an effectively calculated parametric representation of extremal polynomials
under the assumption that Abel’s equations are satisfied.
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The circles C1,Ch,...,Cy make up half the canonical basis of 1-cycles on the
compact curve M, := D(6)/&. Hence [12] Abelian differentials on the curve can
be normalized by a prescription of their periods along these circles. In particular,
the differential dny; associated with the curve M with periods prescribed by Abel’s
equations (23) has the representation

g
dn = dnzy—l—z%dcs, z2:= Goloo, Y = Uso- (43)

s=1

It is now easy to obtain an expression for the Akhiezer function P, () from which
one can recover the extremal polynomial P, by formula (25). In a similar way one
finds the independent variable z(u) defined in general up to affine motions. The
results of our calculations are collected in Table 1, in which we take into account
the form of the generator Go(u).

TABLE 1
0ei 0ei
Normalization of z(u) | u = (0,1,00) = z = (0,00, —1) u = (£4,00) = = = (£, 00)
1
2(u) = (0050, 1)(u,0030,~1) [ T ) s= (w005 i, 1)?
x] —
g prous
= . m; N Ej(u)\™
P, (u) = (u,oo,—l,l)”]l:IlE]- 7 (u) (u,z,O,oo)”]l;Il(Ej(i)

Using formula (36) one can calculate the jets of the functions P, (u), z(u), and
therefore the derivatives D' P,(z), m = 0,1,2,..., of the extremal polynomial.
In terms of the values of these derivatives at various points one can express the
constraints of the optimization problem: for instance, the two leading coefficients
of the polynomial are P,(z)z~™ and (nP,(z) — 2P, (z))z " for u = u.

3.4. Abel’s equations in the space Sg(i). Of course a meromorphic function
with divisor n(co_— — ooy ) does not exist on each curve M. Conditions for the
automorphy of the function P, (u) in Table 1 are equivalent to Abel’s equations (23).

Figure 5. Calculation of Ax — JA«, s €1/, j €i: (a) for 0 €i; (b) for 0 €1

Lemma 10. Abel’s equations (23) are equivalent to the g real relations:

0ei 0€i

m

EX(1) = EME]? ... By, s=1,....,g | EFMO)ET'EY?.. By =1,s=1,...,9
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Proof. We can formulate Abel’s equations as follows: the differential (43) normal-
ized by conditions (23) must have purely imaginary periods on the curve. This
condition holds on the cycles Ci,Cs,...,Cy in view of the normalization (29) of
the holomorphic differentials. Let A;, j = 1,...,9, be an arc in R(&) N H
joining the real point u € GoC; and S;u € C;. Using the intersection form one
can verify that the 2g cycles C,...,Cy; Ai,..., Ay form a basis in the lattice of
integral 1-cycles on the compact curve M, := D(S)/S. We see from Fig. 5 that

Aj —JA; =x(1,0)-Cy +x(i,5) - C;  (mod 2H; (M, Z)), (44)

where x(i, - ) is the characteristic function of the set i taking values 0 and 1. Since
the differential dn is real, taking account of normalization conditions (29), the
fact that the index m; is even for j € i, and the congruence (44) we obtain

Im / ndn € 2mwiZ. Hence the periods of dn are purely imaginary if and only

J
if exp (/ ndn) =1,j5=1,...,9. The transformation rules (32), (33) for the
A

Schottky functions transform the remaining ¢ relations into the form required in
the statement of the theorem.

3.5. Scheme of the algorithm. We now describe a protocol for the solution of
least deviation problems in the framework of our approach.

(1) Given the problem data, find the topological invariants g, k and the integer
indices mg,ma, ..., mg corresponding to the solution P,(x). This is related to
finding a low-dimensional face of the sphere {Q,(z) : ||Qx ||z = const} in the space
of polynomials containing the solution P,(z). The author knows of no algorithm
implementing this part of the protocol. The integer indices mg,m1, ..., my can be
guessed; sometimes one knows their asymptotic values as n — oo, for instance, in
the problem of the least deviation of a monic polynomial on several intervals of the
real axis.

(2) Fix a partitioning of the index set {0,1,...,9} = i Ui. This produces a
realization of the universal covering space JN-C’; as a subdomain of the Euclidean
space explicitly defined by the system of inequalities (7), (8).

(3) Make a descent from an arbitrary point in the moduli space onto the smooth
g-dimensional submanifold T of the domain 9’;(1) described by Abel’s equations in
Lemma 10. Locally, navigation in the moduli space is performed with the help of
variational formulae (41), (42) enabling one to implement Newton’s or other descent
methods.

(4) Using formulae (36) for derivatives of the automorphic functions and varia-
tional formulae for Abelian integrals find on T a point M with polynomial satisfying
the constraints of the least deviation problem.

(5) Recover the solution P, (z) from the associated curve M using the parametric
formulae in Table 1.

We plot the graphs of several extremal polynomials calculated by means of soft-
ware realizing parts (3)—(5) of the protocol in Fig. 6.



494 A.B. Bogatyrév

-1.00 -0.50 0.00 0.50 1.00

0.00

~1.00 = ' | ' I ' I ' |
-1.00 -0.50 0.00 0.50 1.00
1.00

0.00

~1.00 ' I ' I ' I ' I
-1.00 -0.50 0.00 0.50 1.00

Figure 6. The extremal polynomials Pso(z) for g =2, k= 3,2,1
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