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Representation of moduli spaces of curves

and calculation of extremal polynomials

A.B. Bogatyrëv

Abstract. The classical Chebyshev and Zolotarëv polynomials are the first ranks
of the hierarchy of extremal polynomials, which are typical solutions of problems
on the conditional minimization of the uniform norm over a space of polynomials.
In the general case such polynomials are connected with hyperelliptic curves the
genus of which labels the ranks of the hierarchy. Representations of the moduli
spaces of such curves are considered in this paper with applications to the calcula-
tion of extremal polynomials. Uniformizing curves by special Schottky groups one
obtains effectively computable parametric expressions for extremal polynomials in
terms of linear series of Poincaré.
Bibliography: 12 titles

§ 1. Introduction
150 years ago, Chebyshev and his school started the investigation of problems

of the conditional minimization, over the space of real polynomials P (x), of their
deviation ‖P‖E := maxx∈E |P (x)|, where E is a compact subset of the real axis.
Typical constraints in such a problem are an upper bound on the degree n = deg P
of the polynomial and fixed values of its derivatives P (m)(x), m = 0, 1, 2, . . ., at
certain fixed points x ∈ C.
Nowadays, interest in least deviation problems relates, for instance, to the opti-

mization of numerical methods and signal processing. Iterative methods of condi-
tional minimization (see the references in [1]) are very labour-consuming for high
degrees n of the solution. The classical approach, when the solution is normally
given by an explicit formula, is free from this deficiency. The first least deviation
problems were solved in the form of parametric expressions (Chebyshev, 1853, and
Zolotarëv, 1868 [2]):

Tn(u) := cos(nu), x(u) := cos(u), u ∈ C, (1)

Zn(u) :=
1

2

{[
H(a+ u)

H(a− u)

]n
+

[
H(a− u)
H(a+ u)

]n}
, x(u) :=

sn2(u) + sn2(a)

sn2(u)− sn2(a) , u ∈ C,
(2)
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where H( · ) is the elliptic theta function in the (now outdated) Jacobi notation,
sn( · ) is the elliptic sine function of the same modulus k ∈ (0, 1), a := mK(k)/n,
m = 1, 2, . . . , n − 1, is the phase shift, and K(k) is the full elliptic integral of
modulus k. The expressions Tn and Zn are x-polynomials of degree n satisfying
the following definition. We say that a real polynomial is (normalized) extremal if
all its critical points, except a small number g of them, are simple and correspond
to the values ±1. For the Chebyshev polynomials Tn one has g = 0 and for the
Zolotarëv polynomials Zn, g = 1. The theory of general extremal polynomials for
g = 0, 1, 2, . . . has been developed in [1]. We now present the requisite information
on the representation of such polynomials.
A construction going back to Chebyshev associates with a real polynomial Pn(x)

the real hyperelliptic curve

M =M(e) :=

{
(x, w) ∈ C2 : w2 =

2g+2∏
s=1

(x− es)
}
, e := {es}2g+2s=1 , (3)

with branching divisor e equal to the odd-order zeros of the polynomial P 2n(x)− 1.
If Pn(x) is a normalized extremal polynomial, then the genus g of M is not large;
it is equal to the properly counted number of exceptional critical points of the
polynomial. The polynomial of degree n can be recovered from the associated
curve (3) up to a sign by an explicit formula generalizing (1) and (2):

Pn(x) = ± cos
(
ni

∫ (x,w)
(e,0)

dηM

)
, x ∈ C, (x, w) ∈M, (4)

where dηM :=

g∏
s=1

(x− cs)
dx

w
is an Abelian differential with purely imaginary peri-

ods. The curve (3) associated with a polynomial of degree n satisfies the system of
Abel’s equations

−i
∫
C−s

dηM = 2π
ms
n
, s = 0, 1, . . ., g, (5)

where {C−s }
g
s=0 is a basis in the lattice of integral 1-cycles on the curveM changing

sign after the anticonformal involution J(x, w) := (x, w), and the ms are integers
from the domain described in [3].
The aim of the present paper is twofold:

(A) to solve effectively Abel’s equations (5) in the moduli space of the curves M ;
(B) to calculate effectively by formula (4) extremal polynomials and their deriva-
tives of various orders so that they comply with the constraints of the least
deviation problem.

In the special case of Chebyshev polynomials on several intervals this aim was
attained in [4] by means of the uniformization of the curves M in question by
Schottky groups. The extension of these techniques to the general case comes up
against a more complicated topology of the moduli space of the curves (3). A com-
ponent of this space is homeomorphic to the product of a cell by the configuration
space of a (half-)plane and its fundamental group is an Artin braid group. Our
problems (A) and (B) require an organization of iterative computations on moduli
spaces; to this end we perform an analytic uniformization of these spaces.
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§ 2. Representations of moduli spaces
Real hyperelliptic curves (3) associated with polynomials are distinguished by

means of Abel’s equations (5) defined globally on the universal cover of the curve
moduli space. It can be useful to look at an object of investigation from various
standpoints, therefore we present four definitions of this space and demonstrate
their equivalence. In the standard fashion the universal cover of the moduli space
is defined as the set of branching divisors e of the prescribed type together with the
history of their motion starting from a fixed divisor e0. By considering a divisor
as moving in a viscous medium and carrying with it particles of this medium we
arrive at the Teichmüller space of a punctured disc with distinguished boundary
points, a flexible technique, which reveals connections that exist between views from
various standpoints. The deformation spaces of special Kleinian groups bring forth
global coordinates in the space under study and allow an effective construction of
analytic objects. Labyrinth spaces, the most geometric of them all, enable one to
calculate [3] the range of the period map defined by the left-hand sides of Abel’s
equations.

2.1. Four definitions. We fix the topological invariants of a real curve (3): its
genus g = 0, 1, 2, . . . and the number of coreal ovals k = 0, 1, . . . , g+1. A symmetric
divisor e of type (g, k) is an unordered set of distinct points e1, . . . , e2g+2 consisting
of 2k real points and g−k+1 pairs of complex conjugate ones. On such sets we have
a free action of the group A+1 of orientation-preserving affine motions of the real

axis: e = {es}2g+2s=1 → Ae + B = {Aes + B}
2g+2
s=1 , A > 0, B ∈ R. We shall call the

orbits of this action the moduli space Hkg . Points in the moduli space correspond
to conformal classes of real hyperelliptic curves (3) with fixed invariants g, k and
distinguished point ∞+ on the oriented real oval. The space Hkg has the natural
structure of a real 2g-manifold. For the introduction of local coordinates in the
neighbourhood of a fixed divisor e0 we number the point in the set e0 = {es}2g+2s=1

and fix a pair of complex conjugate or a pair of real points e2g+1, e2g+2. For local
coordinate variables we take the quantities Re es and Im es for the points es in the
open upper half-plane H and Re es for the real points es, s = 1, 2, . . . , 2g.

Lemma 1 [1]. The fundamental group of the moduli space π1(H
k
g) is isomorphic

to the group Brg−k+1 of Artin braids on g − k + 1 strings.

The space of classes of homotopically equivalent paths in Hkg starting at the

distinguished point e0 in the moduli space is called the universal cover H̃kg(e
0). It

has three representations described below.

2.1.1. Teichmüller space. Quasiconformal homeomorphisms of the upper half-
plane H with fixed infinity form a group QC(H) with respect to taking compos-
ites. Each map f ∈ QC(H) can be extended to a quasiconformal homeomorphism
of C by means of the reflection relative to the real axis. The motions f stabi-
lizing the fixed branching divisor e0 (but possibly rearranging points in it) make
up a subgroup QC(H, e0). The motions f joined to id by a homotopy of the
punctured sphere CP1 \ e0 stabilizing infinity make up a subgroup QC0(H, e0) of
QC(H, e0). It acts on QC(H) by right multiplications, while the affine group A+1
acts by left multiplications. These actions commute and the well-defined two-sided
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quotient Tkg (e
0) := A+1 \ QC(H)/QC0(H, e0) is called the Teichmüller space.1 By

the Teichmüller distance between classes [f ], [h] ∈ Tkg (e0) one means the minimum
over all representatives f1 ∈ [f ], h1 ∈ [h] of the logarithm of the dilatation of the
quasiconformal map f1h

−1
1 .

The modular group Mod(e0) := QC(H, e0)/QC0(H, e0) acts by right multipli-
cations on the Teichmüller space and the corresponding automorphisms are isome-
tries. One’s choice of a distinguished divisor e0 in the definition of the Teichmüller
space is not essential: a motion h ∈ QC(H) gives rise to an isometry of Tkg (e0)
onto Tkg (he

0) by the formula f → fh−1. Obviously, QC(H, he0) = hQC(H, e0)h−1
and QC0(H, he0) = hQC0(H, e0)h−1, therefore the modular groups Mod(e0) and
Mod(he0) are isomorphic and our isometry Tkg (e

0) → Tkg (he0) commutes with the
action of the modular groups in each space.

Assigning to a motion f ∈ QC(H) the branching divisor e := f(e0) we obtain a
projection of the Teichmüller space onto the moduli space. The fibres of this pro-
jection are orbits of the modular group. We shall demonstrate that this projection
coincides with the universal cover.

2.1.2. Deformation space of the group. We partition the index set {0, 1, . . . , g}
into two subsets: a (g − k + 1)-element one i and its k-element complement i′.
The deformation space Gkg(i) is formed by ordered sets {Gs}

g
s=0 of linear fractional

rotations of the second order with real fixed points cs±rs for s ∈ i′ or with complex
conjugate fixed points cs ± irs for s ∈ i:

G0u :=

{ −u, 0 ∈ i′,

−1
u
, 0 ∈ i,

Gsu :=


cs +

r2s
u− cs

, s ∈ i′,

cs −
r2s
u− cs

, s ∈ i,
s = 1, 2, . . . , g. (6)

The real parameters cs and rs (the moduli) are selected so that the following geo-
metric condition holds. There exist g disjoint subintervals of (0, u∞) numbered in
increasing order such that the circles C1, C2, . . . , Cg with diameters on these inter-
vals pass through the fixed points of the corresponding motions G1, G2, . . . , Gg (see
Fig. 1(a)). The distinguished point u∞ is +∞ if 0 ∈ i, and u∞ := 1 for 0 ∈ i′.

(a) The circles C1, C2, . . . , Cg for i = {1, 2} (b) The limiting position of the circles

Figure 1

1This is a modification of the standard definition [5] of the Teichmuller space of a disc with
g − k + 1 punctures and 2k + 1 distinguished points at the boundary.
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If this condition is fulfilled, then the y-axis C0 and the circles C1, C2, . . . , Cg
bound the fundamental domain R of the Kleinian group G generated by the rota-
tions G0, G1, . . . , Gg. By Klein’s combination theorem [6] the group G is the free
product of g+1 second-order groups. The hyperbolic motions {Sl := GlG0}gl=1 gen-
erate the Schottky group S, |G : S| = 2. These two groups have a common domain
of discontinuity D and a limit set lying on the real axis. The linear measure of the
limit set is zero since the group S satisfies the following Schottky criterion [7]:
the fundamental domain R(S) (= the exterior of the 2g circles G0Cg, . . . , G0C1;
C1, . . . , Cg) can be partitioned into triply connected domains (= pants) by additional
circles. This is crucial for our aims because the Poincaré linear theta series will con-
verge absolutely and uniformly on compact subsets of the domain of discontinuity
of S.
The orbit manifold of the group G is the Riemann sphere with natural reflec-

tion Ju := u. The quotient manifold D/S is a compact algebraic curve Mc of
genus g with hyperelliptic involution Ju := G0u and anticonformal involution J .
A holomorphic projection x(u) : D→ CP1 ∼= D/G with a pole at the distinguished
point u∞ that respects complex conjugation and preserves the orientation of the
real axis in the neighbourhood of u = u∞ is defined uniquely up to motions in A

+
1 .

We say that such a branched cover x(u) is compatible with the group G. Assign-
ing to the Kleinian group the branching points of x(u) (= the projections onto
the sphere of the fixed points of the rotations {Gs}gs=0) we define a map from the
deformation space Gkg into the moduli space H

k
g . We show in what follows that

this is the universal cover and the modular group acts on the deformation space
preserving the Kleinian group G (up to conjugation), but changing the system of
its generators.

lacuna

(a) The labyrinth (e,Λ) for g = 4, k = 2, i = {0, 2, 3} (b) A modification of a labyrinth

Figure 2

2.1.3. Labyrinth space. By a labyrinth (e,Λ) of type (g, k, i) we shall mean
a symmetric divisor e of type (g, k) supplemented with a system of disjoint cuts
Λ := (Λ0,Λ1, . . . ,Λg) connecting pairwise points in e. The first group of cuts are
the projections of the k coreal ovals of the curve M(e), that is, the components
of the set {x ∈ R : w2(x) < 0}. The second group is a system of smooth simple
arcs connecting complex conjugate points e that are invariant under the reflection
relative to R. The intersections with the real axis define an ordering of the cuts,
which we number from 0 to g from left to right (see Fig. 2(a)). The indices of the
cuts in the second group form the set i.
Two labyrinths (e,Λ) and (e′,Λ′) are considered equivalent if there exists a

motion inA+1 taking e to e
′ and the paths Λ into paths continuously deformable into
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Λ′ so that the deformed paths and the point set e′ form a labyrinth at each instant.
We call the quotient of the set of labyrinths of type (g, k, i) by this equivalence
relation the labyrinth space Lkg(i). Wiping away the cuts one obtains a natural

projection Lkg(i)→ Hkg .
The idea behind the introduction of labyrinths is as follows: the cuts of a

labyrinth transform the punctured half-plane H \ e into a simply connected set.
On the one hand this fixes generators of the free group π1(H \ e) and on the other,
it allows one to trace the dynamics of the punctures.

2.2. Auxiliary results. The proof of the equivalence of the four spaces H̃kg(e
0),

Tkg (e
0), Gkg(i), L

k
g(i) introduced above is based on their properties to be established

in this subsection.

2.2.1. Topology of the deformation space. The moduli cs, rs > 0, s=1, . . . , g,
form a global system of coordinates in the deformation space Gkg(i) and allow one

to identify it with a subdomain of R2g.

Lemma 2. The space Gkg(i) is the cell described by the system of inequalities

rs > 0, s = 1, 2, . . . , g, (7)

cs + rs < Gs+1(cs + rs) < Gs+2Gs+1(cs + rs) < Gs+3Gs+2Gs+1(cs + rs)

< · · · < Gs′−1Gs′−2 · · ·Gs+2Gs+1(cs + rs) < cs′ − rs′ , (8)

where the indices s and s′ in the last chain of inequalities answer one of the following
four descriptions:

(1) s and s′, s < s′, are successive indices in the set i′ \ {0};
(2) s = 0 and s′ is the smallest index in i′ \ {0}; here one sets c0 + r0 := 0;
(3) s is the greatest index in i′ \ {0} and s′ = g + 1,
here one sets cs′ − rs′ := u∞;

(4) s = 0 and s′ = g + 1 if the set i′ \ {0} is empty.

Proof. The rotationGs, s ∈ i′, has real fixed points and therefore the corresponding
circle Cs is uniquely defined. On the other hand, one can move the real diameter
of the circle Cs, s ∈ i. We move all such diameters to the extreme right position
(see Fig. 1(b)). The system of inequalities (8) describes the ordering of the end-
points of the resulting diameters in the interval (0, u∞). One obtains a diameter
configuration, which can be uniquely recovered from their end-points, ranging over
the cell {0 < u1 < u2 < · · · < uα < u∞} of dimension α := 2#{i′\{0}}+#{i\{0}},
and the index set i. Prescribing a direction from the centre of the sth shifted
diameter to the fixed point of the rotation Gs in the upper half-plane, s ∈ i \ {0},
one obtains a point in the cell (0, π)β , β := #{i \ {0}}. We have thus constructed
a map of the space Gkg(i) onto a cell of dimension α + β = 2g which is continuous
and one-to-one.

2.2.2. The group of the branched cover x(u)x(u)x(u). Each labyrinth (e,Λ) defines
a representation χΛ from the fundamental group of the punctured sphere
π1(CP1 \ e,∞) into an abstract group G equal to the free product of g + 1
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groups of the second order with generators G0, G1, . . . , Gg. One assigns to a loop ρ
intersecting transversally the successive cuts Λs1 ,Λs2, . . . ,Λsl the element of this
group

χΛ[ρ] := Gs1Gs2 · · ·Gsl.

A point {Gs}gs=0 in the deformation space generates a labyrinth (e,Λ) in accordance
with the following rule: e := {x(fixGs)}gs=0 is the set of projections of the fixed
points of the generators; Λ := (xC0, xC1, . . . , xCg) is the projection of the boundary
of the fundamental domain. For 0 ∈ i one must shift C0 away from a pole of x(u),
replacing it by the circles Cε := {u : |εu + 1|2 = ε2 + 1} with small ε > 0. The
kernel of the corresponding representation χΛ is the group of the cover x(u) ramified
over e and related to the element in question of the deformation space. The cover
group can be proved to be completely determined by the branching divisor e.

Lemma 3. The kernel of the representation χΛ : π1(CP1 \ e,∞)→ G is indepen-
dent of the labyrinth Λ.

Proof. We shall show that kerχΛ is equal to the normal subgroup of π1(CP1 \e,∞)
generated by all elements of the following two kinds:

(a) a lasso making two rounds about the punctures and
(b) a loop λ with mirror symmetry [λλ] = 1 that is disjoint from the cuts Λi,
i ∈ i′.

The above-described subgroup is independent of one’s choice of the labyrinth (each
labyrinth contains the projections of the coreal ovals of the curve M(e)) and obvi-
ously lies in the kernel of χΛ. We shall now demonstrate the reverse inclusion in the
case when the curve contains at least one coreal oval. The case k = 0 will require
obvious changes in the argument.
A cell decomposition of the Riemann sphere with 2g+2 vertices e, 2g+1 oriented

edges R, and one 2-cell gives us a system of free generators of the group π1(CP1\e):
one associates with each edge R the class of the loop ρ intersecting only this edge
from left to right. Such a cell decomposition can be constructed from the labyrinth
(e,Λ). The intervals Λi, i ∈ i′, give us k edges R, the lacunae between them (= the
projections of finite real ovals) give a further k− 1 edges. The lacking 2(g− k+1)
edges can be obtained by a modification of the remaining arcs of the labyrinth Λi,
i ∈ i, in the neighbourhood of real ovals of the curve M after which they pass
through the punctures on the real axis (see Fig 2(b)).
On the generators related to the edges R the representation χΛ acts as follows:

χΛ[ρ] =

{
Gs if R is a (modified) cut Λs,

1 if R is a lacuna.

Since G is the free product of groups of rank 2, the kernel χΛ is the normal
subgroup generated by all possible elements [γ], [ρ]2, [ρρ], where the [γ] correspond
to the k − 1 lacunae and the [ρ] correspond to the other 2g − k + 2 edges R. An
exhaustive search demonstrates that all these elements generating kerχΛ belong to
the above-described subgroup.

Naturally embedded in the fundamental group of the punctured sphere is the
group of the punctured upper hyperplane π1(H\e,∞). As in Lemma 3, the cuts in
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a labyrinth present a system of free generators coding the elements of that group: a
loop ρ in the upper hyperplane intersecting transversally the cuts Λs1,Λs2 , . . . ,Λsl
one after another can be expanded in the generators λs, s ∈ i, intersecting only the
cut Λs from left to right:

[ρ] = [λs1]
ε1 [λs2]

ε2 · · · [λsl ]εl, (9)

where εj = ±1 depending on the orientation of the local intersection of ρ with the
cut Λsj .

Lemma 4. Let ρ ⊂ H \ e be a loop without self-intersections and with initial point
at ∞. Then the irreducible factorization of [ρ] in the generators (9) has no equal
letters following one another.

Proof. This is a result of discrete mathematics based on the idea of continuity.
The factorization depends only on the homotopy class of the loop ρ, therefore we
shall assume without loss of generality that ρ intersects the Λs transversally and at
finitely many points. Making finitely many transformations of Fig. 3(a) we replace ρ
by a homotopic loop without self-intersections with irreducible factorization (9). If
this representation contains two successive symbols [λj], then, up to orientation, we
are in the situation of Fig. 3(b). The point going along ρ must return to infinity,
but it cannot leave the shaded domain bounded by the loop itself and a piece of
the cut Λj: otherwise the loop self-intersects or its factorization is reducible.

(a) The elimination of cancellations (b) The infinite spiral ρ and the generator λs

Figure 3

2.2.3. Modular group action on the group GGG. The natural action of homeo-
morphisms f ∈ QC(H, e) on the fundamental group of the punctured sphere CP1\e
gives rise to the action of the modular group Mod(e) := QC(H, e)/QC0(H, e) on
the group π1(CP1 \ e,∞)/ kerχΛ ∼= G. In fact, the action of f on the fundamen-
tal group depends only on the homotopy class of f , and the characterization of
kerχΛ used in the proof of Lemma 3 demonstrates its stability with respect to this
action. For instance, for a smooth representative f of the homotopy class we have
f · kerχΛ = kerχfΛ = kerχΛ. The next result shows that the representation from
the modular group into the automorphism group of G is faithful.

Theorem 1. The action of f ∈ QC(H, e) on the group G is trivial if and only if
f ∈ QC0(H, e).
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Proof. Assume that f acts trivially on the group G. We shall show that the action
of f on the fundamental group π1(CP1 \ e,∞) is also trivial. The fundamental
group of the punctured sphere is generated by three classes of loops. These are
loops in the punctured upper and lower half-planes and also loops in a sufficiently
narrow punctured neighbourhood of the real axis. The action of f on the last
class is trivial, and its actions on loops in the first two classes agree in view of the
mirror symmetry f(x) = f(x). We shall therefore analyse the action of f on
the fundamental group π1(H \ e,∞).
Each generator [λs] of the fundamental group of the punctured half-plane pro-

duced by a labyrinth contains a loop λs without self-intersections such that its
image fλs is also a simple loop. The representation χΛ takes the generator [λs]
to an element Gs, s ∈ i. Recall that the group G is freely generated by rank 2
groups, therefore it follows by Lemma 4 that χΛ[fλs] = Gs only in two cases:
[fλs] = [λs] and [fλs] = [λs]

−1. The second case cannot occur because f respects
the orientation.

Having established that the action of f on the fundamental group of the punc-
tured Riemann sphere is trivial we use a construction due to Ahlfors [5], [8]. Let

H → CP1 \ e be the universal cover. A lift f̃ : H → H of f onto the covering
space starting from an arbitrary point in the inverse image of the point at infinity
commutes with covering transformations because the action of f on the fundamen-

tal group of the base is identical. Let f̃t(u) be a point partitioning in the ratio

t : (1− t), t ∈ [0, 1], the non-Euclidean interval [f̃(u), u] in the Lobachevskǐı plane.
Lowering the map f̃t(u) to the base we obtain a homotopy of CP1 \ e stabilizing
infinity and connecting f with the identity map.

2.2.4. Equivalence of labyrinths.

Theorem 2. Two labyrinths (e,Λ) and (e,Λ′) are equivalent if and only if the
induced representations χΛ, χΛ′ : π1(CP1 \ e,∞)→ G are the same.

Proof. During a continuous deformation of the labyrinth Λ the representations χΛ
into the discrete group G must remain the same, therefore this representation is the
same on equivalent labyrinths. Conversely, for χΛ = χΛ′ we shall explicitly describe
the deformation Λ′ → Λ. In view of the mirror symmetry, such a deformation is
uniquely defined by the motion of the labyrinth in the upper half-plane.

We start with the following preliminary observation: the systems of free gen-
erators (= the alphabets) [λ′i], i ∈ i(Λ′), [λs], s ∈ i(Λ), of the fundamental group
π1(H \ e,∞) related to the labyrinths Λ′ and Λ are the same. For consider a sim-
ple loop representing a class [λ′i]. Its irreducible factorization in the generators of
the second system [λ′i] = [λs1]

ε1 [λs2]
ε2 · · · [λsl ]εl contains no repeating letters by

Lemma 4. Accordingly, the word Gs1Gs2 · · ·Gsl =: χΛ([λ′i]) = χΛ′([λ′i]) := Gi
is irreducible. Such an equality in the group G is possible if [λ′i] = [λi]

±1. The
classes [λ′i] and [λi] are conjugate in the fundamental group of the punctured
hyperplane because the corresponding loops go counterclockwise about the same
puncture. The elements [λi] and [λi]

−1 cannot be conjugate in the freely
generated groups, therefore [λ′i] = [λi]. In particular, both labyrinths are of the
same type: i(Λ) = i(Λ′). After the obvious deformation of Λ′ we can assume that
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(a) Deformation of the labyrinth Λ′ (b) Expansion of the loop ρ := ∂(H \ Λs) in generators

Figure 4

the labyrinths are equal on the real axis, while in the upper half-plane they intersect
transversally at finitely many points.
Assume that Λs ∩ Λ′i contains points x1 and x2 in the upper half-plane with

opposite orientation of the intersections and the segment of the arc Λs between them
is disjoint from the labyrinth Λ′. The segments Λs and Λ

′
i cut by the points x1 and

x2 bound a cell in H disjoint from the labyrinth Λ
′ and, in particular, containing no

punctures. This cell can be retracted — we depict the corresponding deformation
in the background of Fig 4(a). We consider also the limiting case when one of the
points x1, x2 is an end-point of Λs. Each of these deformations of Λ

′ reduces
the number of its intersections with the labyrinth Λ. Hence in finitely many steps
we arrive at an equivalent labyrinth of the above-described structure (still denoted
by Λ′) disjoint from Λ. We claim that the intersection of the two labyrinths in the
upper half-plane now contains only points in e. This actually means that Λi and
Λ′i, i ∈ i, bound in H a cell containing no points from either labyrinth. Retracting
such cells we obtain a deformation Λ′ → Λ.
Assume now that Λs \ e intersects the arcs Λ′i1 ,Λ

′
i2
, . . . ,Λ′il in the upper half-

plane one after another, as in Fig. 4(b). We factor the loop ρ going along the
boundary of H \ Λs in the two systems of representatives related to the labyrinths
Λ and Λ′. Setting equal these expressions and taking account of the equality of
the alphabets [λ′i] = [λi], i ∈ i, we obtain a commutation relation in the freely
generated group π1(H \ e):

[λs] · [λi1 ]ε1[λi2 ]ε1 · · · [λil]εl = [λi1 ]εl[λi2 ]ε1 · · · [λil]ε1 · [λs], (10)

where εj = ±1 depending on the orientation of the intersection of Λs and Λ′ij . The
word on the right-hand side of (10) is irreducible, for otherwise we would be able to
make a deformation of the labyrinth Λ′ described in the previous paragraph. Hence
this word consists of one letter [λs] and the labyrinth Λ

′ does not intersect the arc
Λs ∩H at its interior points.

2.2.5. Quasiconformal deformation. The idea of the quasiconformal deforma-
tion of a group is due to Ahlfors and Bers [8], [9]; we merely adapt it to our aims.
To start with, we fix an element {G0s}

g
s=0 of the deformation space G

k
g(i) generating

the Kleinian group G0 and a projection x0(u) : D(G0)→ CP1 compatible with this
group.
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Construction. Let f(x) be a quasiconformal motion of the plane of the complex
variable x. We lift its Beltrami differential

µ(x)
dx

dx
:=
fxdx

fxdx

to the domain of discontinuity D(G0) by means of the covering map compatible
with the group. We extend the new differential

µ̃(u)
du

du
:= µ(x0(u))

dx0(u)

dx0(u)

by zero to the limit set of the group G0, which has measure zero. Consider a

quasiconformal homeomorphism f̃(u) of the Riemann sphere satisfying the Beltrami
equation

∂

∂u
f̃(u) = µ̃(u) · ∂

∂u
f̃(u) (11)

and fixing three points: two fixed points of the generator G0 and the distinguished

point u∞. The Beltrami differential µ̃(u)
du

du
is G0-invariant by construction, there-

fore the uniqueness theorem for quasiconformal homeomorphisms states that the

homeomorphisms f̃(u) and f̃(Gu) differ by a conformal motion of the Riemann
sphere:

Gf ◦ f̃ = f̃ ◦G, G ∈ G0, Gf ∈ PSL2(C). (12)

The group Gf := f̃G0f̃−1 generated by such motions is isomorphic to G0, acts

discontinuously in the domain D(Gf ) := f̃D(G0), and is called the quasiconformal
deformation of the group G0 generated by the element f ∈ QC(H). The distin-
guished system of generators {G0s}

g
s=0 of G

0 is taken to a distinguished system of

generators {Gfs := f̃G0sf̃−1}
g
s=0.

We now formulate two technical results underlining the natural character of the
construction of the quasiconformal deformation. They are an easy consequence of
the uniqueness of the normalized quasiconformal map with fixed Beltrami coeffi-
cient [8].

Lemma 5. (1) If f ∈ QC(H) deforms the group G0 into Gf , then the distinguished
holomorphic projection xf (u) : D(Gf )→ CP1 with normalization xf(u) := f◦x0(u),
u ∈ {fixG0, u∞}, completes the diagram (a) to a commutative diagram:

(a)

D(G0)
f̃−−−−→ D(Gf)�x0 �xf

CP1
f−−−−→ CP1

, (b)

D(G0)
h̃−−−−→ D(Gh)

f̃−−−−→ D(Gfh)�x0 �xh �xfh
CP1

h−−−−→ CP1
f−−−−→ CP1

. (13)

(2) The deformation of the group G0 by the composite fh of two maps can be
performed in two steps: first, by means of h one deforms the group G0 into Gh (the
left square in (b)) and uses it as the distinguished group for the second deformation,
by means of f (the right square in (b)). The deforming homeomorphism of the

composite map fh is equal to f̃ h̃ and the required deformation of the group is

Gfh = f̃Ghf̃−1.
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Remark. The second result can be understood as follows. Quasiconformal maps
act on the left on pairs consisting of a system of generators of a Kleinian group and
a holomorphic projection onto the sphere: f · ({G0s}

g
s=0, x

0) := ({Gfs}
g
s=0, x

f). This
action is associative: (fh)·({G0s}

g
s=0, x

0) = f ·({Ghs}
g
s=0, x

h) =: f ·(h·({G0s}
g
s=0, x

0)).

2.3. Equivalence of the representations. The equivalence of the four defini-
tions of the universal cover of the moduli space means the existence of (compatible)

continuous bijections between the topological spaces H̃kg , T
k
g , G

k
g , L

k
g introduced

above. In the following three subsections we shall successively establish homeomor-
phisms: between the Teichmüller space and the deformation space of the Kleinian
group, between the Teichmüller space and the universal cover of the moduli space,
between the labyrinth space and the deformation space of the group. We now
describe these correspondences at an intuitive level.

Tkg ↔ Lkg . A smooth representative f of a Teichmüller class takes the distinguished
labyrinth (e0,Λ0) to a labyrinth (fe0, fΛ0) of the same type. Two labyrinths of
the same type can always be transformed into one another by a suitable map f ,
which is unique up to an isotopy of the punctured plane.

H̃kg(e
0) ↔ Lkg . The universal cover of the moduli space is the set of the branching

divisors e together with the history of their motion from the distinguished divisor e0.
One can recover this history by treating cuts in the labyrinth as the traces left by
points in the divisor in their motion. Conversely, each path in the moduli space
can be deformed so that the points in the divisor e moving in the complex plane
do not intersect their traces. The resulting picture in the plane can be completed
to a labyrinth.

2.3.1. The isomorphy of TkgT
k
gT
k
g and G

k
gG
k
gG
k
g. We fix an element {G0s}

g
s=0 in the defor-

mation space Gkg(i) and a compatible cover x
0(u). The following result is typical

for the theory of Teichmüller spaces [9], [5].

Theorem 3. Quasiconformal deformations bring about a homeomorphism between
Gkg(i) and the Teichmüller space T

k
g (e

0), where e0 := {x0(fixG0s)}
g
s=0 are the branch-

ing points of the cover x0(u).

The proof of Theorem 3 splits naturally into several steps.

Lemma 6. For f ∈ QC(H) the quasiconformal deformation {Gfs}
g
s=0 of the dis-

tinguished element lies in the same space Gkg(i). The cover x
f(u) generated by f is

compatible with the deformed group Gf .

Proof. The following objects are mirror-symmetric relative to the real axis: the Bel-
trami coefficient µ(x) = µ(x) of the function f , the regular cover x0(u) = x0(u), and
the normalization set: (±i,∞) if 0 ∈ i or (0, 1,∞) if 0 ∈ i′. The uniqueness theorem
for the normalized quasiconformal homeomorphism ensures that f̃(u) ∈ QC(H).
Hence the new generators Gfs := f̃G

0
sf̃
−1, s = 0, 1, . . . , g, are real. The deforma-

tion of G0 is always trivial because f̃ stabilizes its fixed points. We claim that the
deformations Gfs of the other rotations satisfy the geometric condition in § 2.1.2.
The motion f̃ fixes the end-points of the interval (0, u∞). In fact, if 0 ∈ i, then
f̃(0) = f̃G0(∞) = Gf0 f̃(∞) = 0. Hence f̃ takes the real diameters of the circles
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C1, C2, . . . , Cg into disjoint closed subintervals of (0, u∞), and we construct new

circles Cf1 , C
f
2 , . . . , C

f
g with these subintervals as diameters. The generator G

f
s ,

s = 1, . . . , g, maps the circle Cfs into itself, but reverses the orientation, there-
fore Gfs has two fixed points on C

f
s . They are real if s ∈ i′ and complex conjugate

if s ∈ i. Hence the new rotations Gfs , s = 0, . . . , g, satisfy the above-mentioned
geometric condition and define an element of the same deformation space Gkg(i).

The deformation f gives rise to the branched cover xf(u) with pole at u =
u∞ in accordance with the normalization. It is symmetric relative to the real
axis and respects the orientation of the real axis in the neighbourhood of the pole
u = u∞ because the other three maps in the commutative diagram (13)(a) have
this property.

Lemma 7. Two maps in QC(H) deform the distinguished element in the same
fashion if and only if they belong to the same class in the Teichmüller space Tkg (e

0).

Proof. (1) We start with a special case of the lemma when one of the quasiconformal
maps is identical.
1(a) If f ∈ A+1 · QC0(H, e0), then f does not deform the generators of the

group G0. The deformation of the distinguished group by f ∈ QC(H, e0) can
in fact be explicitly found. Up to normalization it is equal to the action of the
modular group and, in particular, it is trivial for f ∈ QC0(H, e0). The left action
of the affine group on f preserves the Beltrami coefficient of the map and therefore

has no effect on the deformation f̃ .
Making punctures in the domain D of discontinuity of the distinguished group

at the fixed points of the elliptic transformations we obtain a space
◦
D with a free

action of the covering transformation group G0. We lift the map f ∈ QC(H, e0) to
an automorphism of the covering space

◦
D from the distinguished point u∞:

◦
D

f̆−−−−→
◦
D�x0 �x0

CP1 \ e0
f−−−−→ CP1 \ e0

. (14)

The resulting map f̆ can be defined by continuity at the punctures in the domain
of discontinuity and on the limit set of the distinguished group with the help of the
equivariance condition f̆G = (f · G)f̆ , G, (f · G) ∈ G0. The action of G → f · G
on the covering transformation group G0 is induced by the action of f on the fun-
damental group of the punctured plane CP1 \ e0; see § 2.2.3. The homeomorphism
f̆ : CP1 → CP1 is quasiconformal and its Beltrami coefficient is µ̃. Hence f̆ differs
from f̃ in (13)(a) only by normalization. Calculating f̆ at the fixed points of G0
we obtain

f̃ = αf̆, Gfs := f̃G
0
sf̃
−1 = α(f ·G0s)α−1, α ∈ A+1 , (15)

where the affine motion α = id if 0 ∈ i′, while for 0 ∈ i it is defined by the condition
αf̆(±i) := ±i.
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1(b) If f does not deform the generators of G0, then f ∈ A+1 ·QC0(H, e0). Let
Gf = G0 in the deformation diagram (13)(a); then xf = αx0 for some α ∈ A+1 .
Multiplying f by an affine motion on the left we can assume that f ∈ QC(H, e0)
and xf = x0. Then the deformation of the generators of the distinguished group
is defined by formula (15) for α = id. By Theorem 1 it follows from the equalities
f ·G0s = G0s that f ∈ QC0(H, e0).
(2) We reduce the general case of the lemma to the special case of part (1).

Combining the deformation diagrams of the maps f1, f2 ∈ QC(H) we obtain

D(Gf1)
f̃1←−−−− D(G0) f̃2−−−−→ D(Gf2)�xf1 �x0 �xf2

CP1
f1←−−−− CP1

f2−−−−→ CP1

. (16)

By Lemma 5 on composite deformations the deformations of the generators of the
distinguished group G0 are equal if and only if the map f2f

−1
1 does not deform

the generators of Gf1 . By the special case considered above this can occur if and
only if f2f

−1
1 ∈ A+1 ·QC0(H, f1e0), which is equivalent to the result of the lemma

in the general case: f2 ∈ A+1 · f1 ·QC0(H, e0).
Proof of Theorem 3. We showed in Lemmas 6 and 7 that the map Tkg (e

0) → Gkg(i)
is well defined and injective; we now discuss its surjectivity. One can find a quasi-

conformal map f̃(u) of the standard fundamental domain R of the distinguished
element of Gkg(i) onto the fundamental domain of an arbitrary element of the same
space that

(a) commutes with the reflection Ju := u;
(b) respects the identifications at the boundary and
(c) fixes the three points fixG0, u∞.

One can construct such a map explicitly, but the corresponding description is

lengthy. Extending f̃ by means of equivariance condition (12) to the whole of the
Riemann sphere one obtains the map f in the bases in the diagram (13)(a). By
the uniqueness of the normalized quasiconformal map f deforms the distinguished
element into the prescribed one.
The continuity of the bijection Tkg ↔ Gkg with respect to the Teichmüller metric

in Tkg and the topology of the cell G
k
g follows by the construction of the direct and the

inverse maps; see also formula (17) for infinitesimal quasiconformal transformations.

2.3.2. Isomorphy between TkgT
k
gT
k
g and H̃

k
gH̃
k
gH̃
k
g . We shall identify the orbit manifold of

the modular group with the moduli space.

Lemma 8. The spaces Tkg (e
0)/Mod(e0) and Hkg are homeomorphic.

Proof. We assign to the map f ∈ QC(H) the symmetric divisor fe0. This defines
an injection of the orbit space of the modular group acting on the Teichmuller space
into the moduli space. We shall show that this map is

(1) continuous in the natural topology and
(2) has a continuous inverse in the entire moduli space.

This will prove the homomorphy of the two spaces.
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(1) For local coordinate variables in the moduli space in the neighbourhood of the
distinguished point e0 one can take the independent real and imaginary parts of
the variable points in the divisor {e1, . . . , e2g,−1, 1} =: e ≈ e0 of the type (g, k):
we have fixed the pair of points ±1 in the divisor assuming that k > 0. In the orbit
space of the modular group A+1 \ QC(H)/QC(H, e0) one defines the Teichmuller
metric

ρ([f ], [h]) := inf
[f],[h]

log
1 + ‖µ(x)‖∞
1− ‖µ(x)‖∞

,

where the infimum is taken over the representatives f1 ∈ [f ], h1 ∈ [h] of the
classes, µ(x) is the Beltrami coefficient of the map f1h

−1
1 , the norm ‖µ(x)‖∞ is

the essential maximum of µ(x) in the plane. We can verify that the embedding
Tkg (e

0)/Mod(e0)→ Hkg is continuous in the neighbourhood of [id]; the general case
follows by replacing the distinguished divisor e0. There exists a formula for the
‘principal part’ of the quasiconformal map f(x) with small Beltrami coefficient µ(x)
and fixed points ±1,∞ [5], [6], [8], [9]:

f(e) − e = 1

2πi

∫
C

µ(x)
e2 − 1
x2 − 1

dx∧ dx
x− e +O(‖µ‖

2
∞) (17)

where the remainder term has a uniform estimate on compact subsets of the plane.
It is clear from (17) that the classes [f ] close to [id] in the Teichmüller metric only
slightly deform the divisor e0.
(2) Let σ(x) be an infinitely smooth cut-off function with support small by

comparison with the distance between the points in e0, equal to 1 in a (com-
plex) neighbourhood of x = 0, and conjugation invariant: σ(x) = σ(x). In a
small neighbourhood of the distinguished point e0 in the moduli space we define
a local section of the projection QC(H)→ Hkg :

f(e, x) := x+

2g∑
s=1

(es − e0s)σ(x− e0s), x ∈ C. (18)

The map (18) is a local inversion of our embedding Tkg (e
0)/Mod(e0) → Hkg and

it is continuous. Similar sections can be constructed in the neighbourhood of each
point in the moduli space. Taking composites one defines a continuous inverse map
Hkg → Tkg (e0)/Mod(e0) in the neighbourhood of an arbitrary prescribed point.

Theorem 4. (i) The spaces Tkg (e
0) and H̃kg(e

0) are homeomorphic.

(ii) the groups Mod(e0) and Brg−k+1 are isomorphic.

Proof. We have just shown that the moduli space Hkg is the quotient of T
k
g (e

0)

by the modular group action. We claim that Mod(e0) acts (1) freely and (2) dis-
continuously in the Teichmüller space and therefore the projection Tkg (e

0) → Hkg
is a cover. This is a universal cover because the space Tkg ( · ) ∼= Gkg( · ) is a cell by
Lemma 2. Accordingly, the covering transformation group Mod(e0) of the cover is
isomorphic to the fundamental group of the moduli space, which by Lemma 1
is isomorphic to the braid group Brg−k+1.
(1) For a representative h ∈ QC(H, e0) of the modular group assume that there

exists a motion f ∈ QC(H) such that fh ∈ αfQC0(H, e0) for some α ∈ A+1 .
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Then αfe0 = fe0 and since A+1 acts freely on the divisor set, it follows that α = id
and therefore h ∈ QC0(H, e0). Thus, h represents the identity element of the
modular group.
(2) Transformations in the modular group are isometries of the Teichmüller

space, therefore the discontinuity of the action of Mod(e0) follows from the fact
that it has discrete orbits. We recall from § 2.1.1 that each orbit of the modular
group can, by replacing the distinguished divisor e0, be isometrically transformed
into an orbit passing through the distinguished point [id] in the Teichmüller space.
Thus, let hn ∈ QC(H, e0) be a sequence with infinitesimally small deformations of
the generators of the distinguished group: Ghns → G0s, s = 0, . . . , g.
(2a) If 0 ∈ i′, then the deformation of generators calculated in (15) is as follows:

Ghns = hn · G0s. In the discontinuity domain of the distinguished group we select
a point u with trivial isotropy group (for instance, u = u∞). The convergence
Ghns u → G0su shows that hn · G0s = G0s starting from some n. By Theorem 1 the
trivial action of hn on the group means that hn represents the unit element of
the modular group.
(2b) If 0 ∈ i, then the deformation of the generators is Ghns = αn(hn ·G0s)α−1n ,

αn ∈ A+1 . The distinguished group contains an element invariant under all the hn; it
corresponds to the class of the loop [R+i0] in the fundamental group π1(CP1\e0,∞)
and is equal to G∗ =

∏
s∈iG

0
s, where the product is ordered in increasing order of

the indices. One can deduce from the convergence αnG
∗α−1n → G∗ that αn → id.

The rest of the proof proceeds as in part (2a) of the proof.

The identification of the Teichmüller space with the universal cover of the moduli
space and the deformation space of the special Kleinian group gives rise to two local
coordinate charts in Tkg . First, we have the global coordinate variables (cs, rs)

g
s=1

in Gkg ranging over a cell. Second, we have systems of coordinates in H
k
g related to

the branch points. The following result establishes a connection between the two
systems of coordinates.

Theorem 5. The map H̃kg(e
0) → Gkg(i) is real analytic in local coordinates. Its

Jacobi matrix is non-degenerate with entries effectively calculated with the use of
quadratic Poincaré series.

Proof. To express our map in terms of local variables one must deform the genera-
tors of the distinguished group by means of the local section (18) of the projection
in Lemma 8. It is sufficient to study the map in the neighbourhood of the distin-
guished divisor e0 and, if necessary, to replace the distinguished divisor together
with the distinguished group with the help of Lemma 5 (§ 2) on composite defor-
mations. For a change let 0 ∈ i, that is, assume that the distinguished divisor
e0 contains complex conjugate points, for instance, ±i. For local coordinate vari-
ables in the neighbourhood of the distinguished point in the moduli space Hkg
we shall take the (independent) real and imaginary parts of the complex points
e1, e2, . . . , e2g, which together with {±i} form a simple branching divisor e ≈ e0.
The fixed points of the generators of the distinguished group deformed by f(e, x)

define a map {es}2gs=1 → {cs, rs}
g
s=1 in a small complex neighbourhood of {e0s}

2g
s=1:

cs(e)± rs(e), s ∈ i′,
cs(e)± irs(e), s ∈ i,

}
:= fixGfs = f̃(e, fixG

0
s), s = 1, . . . , g. (19)
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Corresponding to symmetric divisors e in the 2g-dimensional complex neighbour-
hood there are a real 2g-plane and the real moduli cs, rs > 0. We claim that (1) the

complex map {es}2gs=1 → {cs, rs}
g
s=1 is holomorphic, (2) its Jacobi matrix can be

explicitly calculated and (3) it is non-singular.
(1) The Beltrami coefficient µ(e, x) of the function (18) depends holomorphically

in L∞(C) on the components of e. The dependence on e of the coefficient

µ̃(e, u) := µ(e, x0(u))
dx0(u)

dx0(u)

is also holomorphic; the latter is now defined in the domain of discontinuity D(G0).

By a well-known result [8] the map f̃(e, · ) depends analytically on the parameters e.
In particular, all functions v(e) := f̃(e, v), v ∈ {fixG0s}

g
s=1 are holomorphic; the

functions cs(e) and rs(e) are linear combinations of them.
(2) The differentials of the functions v(e) can be calculated by the formula for

an infinitesimal deformation [8], [5], in which
o
= means equality to within terms of

order O
(∑2g

s=1 |es − e0s|2
)
:

2πi(v(e) − v(e0)) o=
∫
C

µ̃(e, u)
v2 + 1

u2 + 1

du ∧ du
u− v

=

∫
R

µ̃(e, u)

[ ∑
G∈G0

(dG(u)/du)2

(Gu)2 + 1

v2 + 1

Gu− v

]
du ∧ du

= (v2 + 1)

∫
C

µ(e, x)
P v2g−1(x)

w2(x)
dx ∧ dx. (20)

In the next to last integral the quadratic Poincaré series defines on the Riemann
sphere x0(R) a meromorphic quadratic differential w−2P v2g−1(x) (dx)

2 dependent

on the point v ∈ {fixG0s}
g
s=1 as a parameter. Its singularities are simple poles,

which can be placed at points in the divisor e0 and at infinity. Such quadratic
differentials (of finite area [5]) form a complex vector space of dimension 2g with
basis

Ωs(x)(dx)
2 :=

(dx)2

(x2 + 1)(x− e0s)
, s = 1, . . . , 2g. (21)

We expand our quadratic differential w−2P v2g−1(x) (dx)
2 with respect to the basis

(21) with coefficients avs := P
v
2g−1(e

0
s)
∏2g
j=1,j �=s(e

0
s−e0j )−1 and continue equality (20)

as follows:

(v2 + 1)

∫
C

µ(e, x)

2g∑
s=1

avsΩs(x) dx ∧ dx

o
= (v2 + 1)

∫
C

2g∑
s=1

avsΩs(x)

2g∑
j=1

(ej − e0j )σx(x− e0j ) dx ∧ dx

= (v2 + 1)

2g∑
j=1

(ej − e0j )
∫
supp σx(x−e0j)

d

(
−
2g∑
s=1

avsΩs(x)σ(x− e0j ) dx
)

= 2πi

2g∑
s=1

avs
v2 + 1

(e0s)
2 + 1

(es − e0s).
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One can recover the differentials of the functions cs(e) and rs(e) from these
expressions.
(3) Assume that the differential of the map {es}2gs=1 → {cs, rs}

g
s=1 is singular

at e0; then there exists a non-trivial tangent vector ξ :=
∑2g
j=1 εj∂/∂ej such that

for e = e0,
ξcs(e) = ξrs(e) = 0, s = 1, 2, . . . , g.

We now differentiate the condition of the equivariance of f̃(e, · ):

Gf ◦ f̃(e, u) = f̃(e, u) ◦G, G ∈ G0, Gf ∈ Gf ,

in the direction of ξ. We see that at the point e0 under consideration the velocity of

the deformation f̃(e, u) defines a G0-invariant inverse differential ξf̃(e0, u)(du)−1.
We claim that all the coefficients εs of the vector ξ vanish. For a proof we lift the

basis elements in (21) to D(G0): Ωs(x
0(u))(dx0(u))2 =: Ω̃s(u)(du)

2. The product
of the quadratic and the inverse differential is a smooth G0-invariant differential

Ω̃s(u) · ξf̃(e0, u) du on D(G0), therefore

0 =

∫
∂R(G0)

Ω̃s(u) · ξf̃(e0, u) du =
∫
R(G0)

d
(
Ω̃s · ξf̃ du

)
= −
∫
R(G0)

Ω̃s · (ξf̃)u du∧ du

(differentiations of f̃ with respect to es and with respect to the variable u

are interchangeable)

= −
∫
R(G0)

Ω̃s(u)

2g∑
j=1

εjσx(x(u) − e0j )
ẋ(u)

ẋ(u)
du∧ du

= −
∫
C

Ωs(x)

2g∑
j=1

εjσx(x− e0j ) dx ∧ dx

=

2g∑
j=1

εj

∫
supp σx(x−e0j)

d
(
Ωs(x)σ(x − e0j ) dx

)
= −2πi

2g∑
j=1

εj Res
x=e0j

Ωs(x) = −2πi
εs

(e0s)
2 + 1

.

Since the quantity e0s is finite, it follows that εs = 0.

2.3.3. Isomorphy of LkgL
k
gL
k
g and G

k
gG
k
gG
k
g. In finding the group of the branched cover

x(u) in § 2.2.2 we already assigned to an element of the deformation space a special
labyrinth, the projection of the boundary of the fundamental domain defined by
this element. The inversion of this correspondence is the basis of the following
result.

Theorem 6. The spaces Lkg(i) and G
k
g(i) are homeomorphic.

Proof. We shall establish a 1-1 correspondence between these spaces.
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(1) The map Gkg(i)→ Lkg(i). Corresponding to each element of the deformation
space Gkg(i) is a system of circles C0, C1, . . . , Cg bounding the fundamental domainR
generated by this element of the Kleinian group. The pole u∞ of the cover x(u)
compatible with the group lies in R if 0 ∈ i′. For 0 ∈ i this can be attained by the
replacement of the ‘infinitely large’ circle C0 by a ‘very large’ circle Cε := {u ∈ C :
|εu + 1|2 = ε2 + 1} with small ε > 0. The projection x(u) takes the boundary of
the fundamental domain to a labyrinth Λ of type (g, k, i), which does not change
its class after admissible perturbations of the circles Ci, i ∈ i.
(2) The map Lkg(i)→ Gkg(i). For definiteness let 0 ∈ i′; there are fewer technical

details in this case. Corresponding to each divisor e of type (g, k) is an orbit of the
modular group acting in Gkg(i). All points in this orbit are associated with the same

compatible cover x(u) : (
◦
D, u∞) → (CP1 \ e,∞). By Lemma 3 the group of this

cover is equal to the kernel of each representation χΛ from the fundamental group
CP1 \ e into the abstract group G := 〈Gs, s ∈ i ∪ i′ : G2s = 1〉. Fixing a labyrinth
(e,Λ) one can therefore realize elements of G as covering transformations of x(u),
that is, linear fractional maps in PGL2(R). For instance, G0(u) = −u (= the unique
rotation of order 2 with fixed points 0,∞). We shall show that the realization of
the remaining generators G1, G2, . . . , Gg satisfies the geometric condition in § 2.1.2.
The fundamental group of the Riemann sphere cut along the labyrinth Λ lies in

the kernel of χΛ by the definition of the representation. Hence we obtain on CP1 \Λ
a well-defined map u(x) inverse to x(u), normalized by the condition u(∞) = u∞,
and inheriting the mirror symmetry u(x) = u(x). This map blows up the cuts in
the labyrinth to smoothly embedded circles symmetrically threaded on the real axis
in the same order as the cuts Λ0,Λ1, . . . ,Λg. Hence

0 = R ∩ (uΛ0) < R ∩ (uΛ1) < · · · < R ∩ (uΛg) < u∞. (22)

Each set R ∩ (uΛi), i = 1, . . . , g, consists of two points, mapped one into another
by Gi(u) if i ∈ i or fixed by it if i ∈ i′. The circle Ci with centre on R passing
through the points R ∩ (uΛi) contains the fixed points of the rotation Gi(u) and
by inequality (22) is disjoint from the other circles of this kind. We see that the
system of generators G0, G1, . . . , Gg defines an element of the deformation space
Gkg(i).
The maps in parts (1) and (2) of the proof are inverse to each other. The

labyrinth {Λs}gs=0 and the labyrinth {xCs}
g
s=0 obtained from it by means of the

composite Lkg(i)→ Gkg(i)→ Lkg(i) have the same representation χΛ by construction.
Hence by Theorem 2 they belong to the same class of the labyrinth space. The
bijection Lkg(i) ↔ Gkg(i) just constructed is continuous by Theorem 5, since the
local coordinate variables in the labyrinth space were borrowed from the moduli
space Hkg .

§ 3. Calculations in the moduli space
An effective calculation of extremal polynomials requires, first of all, the solution

of Abel’s equations (5) defined on the universal cover of the moduli space. These
equations have been thoroughly studied in [1]; we present here only a brief survey.
On each curve M(e) of the moduli space there exists a unique differential of the

third kind dηM with purely imaginary periods and simple poles at infinity such that
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Res dηM |∞± = ∓1. This differential is real: JdηM = dηM , therefore the integrals
of dηM over the even cycles C

+ := JC+ on M vanish. The integrals of dηM over
the odd cycles C− := −JC− define locally the period map onto Hkg . As usual, the
moduli space is multiply connected and the period map cannot be continued to a
global one, since going along a non-trivial cycle in Hkg results in a change of the

basis in the odd homology lattice H−1 (M,Z) := {C ∈ H1(M,Z) : C = −JC}. This
problem can be eliminated by a transition to the universal cover of the moduli space.
In its labyrinthmodel Lkg(i) each element (e,Λ) possesses a distinguished basis in the

lattice H−1 (M,Z). Namely, the cycle C
−
s corresponds to counterclockwise motion

along the bank of the cut Λs on the upper leaf M(e). The left-hand sides of the
equalities

−i
∫
C−s

dηM = 2π
ms

n
, s = 0, 1, . . . , g, ms ∈

{
Z, s ∈ i′,
2Z, s ∈ i,

(23)

define the period map Π: Lkg(i) → Rg+1, whose values lie in a hyperplane: the
integral of dηM over the cycle C

−
0 +C

−
1 + · · ·+C−g is always 2πi. The period map

is a submersion in Rg [1] with a known range [3].
The points M of the moduli space associated with real polynomials of degree n

fill real analytic submanifolds of dimension g that are the inverse image, under the
period map, of the lattice defined by the right-hand side of equations (23). These
equations are equivalent to the existence on M of a real meromorphic (Akhiezer)
function with divisor n(∞− −∞+):

P̃n(x, w) := exp

(
n

∫ (x,w)
(e,0)

dηM

)
. (24)

Its composite with the Zhukovskǐı function is the extremal polynomial:

Pn(x) =
1

2

(
P̃n(x, w) +

1

P̃n(x, w)

)
. (25)

For an effective solution of Abel’s equations (23) and the subsequent recovery
of the polynomial by formulae (24), (25) we uniformize the curves M ∈ Hkg by
the Schottky groups S generated by elements of the deformation space Gkg(i) with
appropriate set i. As is known [10], [4], [11], the linear theta-series of Poincaré
of such groups converge absolutely and uniformly on compact subsets of the dis-
continuity domain D. Summing these series one obtains Abelian differentials on
curves and, in particular, dηM . After identifying the labyrinth space L

k
g(i) and the

deformation space Gkg(i) of the special Kleinian groups the cycles C
−
1 , C

−
2 , . . . , C

−
g

related to the labyrinth are taken to the circles C1, C2, . . . , Cg bounding the fun-
damental domain of the group and the poles ∞+,∞− of the differential dηM are
taken to the points u∞ and G0u∞, respectively. Recall that u∞ = 1 for 0 ∈ i′ and
u∞ =∞ for 0 ∈ i.
Abel’s equations (23) and the Chebyshev representation (24), (25) can be writ-

ten also in terms of the global coordinate variables (cs, rs)
g
s=1 in the space G

k
g(i).
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Thereupon one comes across the problem of navigation in the moduli space. From
an arbitrary point Gkg(i) one must descend to the smooth submanifold described by
Abel’s equations and moving along it, find the curve M corresponding to the poly-
nomial Pn(x) with prescribed constraints. The variational formulae of § 3.2 enable
one to obtain a local solution of the navigation problem.

3.1. Function theory in the Schottky model. One obtains an Abelian differ-
ential of the 3rd kind dηzy with poles at points z and y in the fundamental domain
R(S) by averaging over the group S of the differential on the sphere [11]:

dηzy(u) :=
∑
S∈S

{
1

Su − z −
1

Su − y

}
dS(u) =

∑
S∈S

{
1

u− Sz −
1

u− Sy

}
du; (26)

the two sums are termwise equal in view of the infinitesimal form of the cross ratio
identity. Differentiating (26) with respect to the position of the pole z we obtain
Abelian differentials of the second kind:

dωmz(u) := D
m
z dηzy(u) = m!

∑
S∈S
(Su − z)−m−1 dS(u), m = 1, 2, . . . . (27)

One obtains a holomorphic differential by placing the poles z and y in the same
orbit of the group S and isolating in (26) a telescopic sum:

dζj(u) := dηSjyy =
∑

S∈S|〈Sj〉

{
(u− Sαj)−1 − (u− Sβj )−1

}
du

=
∑

S∈〈Sj〉|S

{
(Su − αj)−1 − (Su − βj)−1

}
dS(u), j = 1, . . . , g;

(28)

summation proceeds over representatives of cosets by the subgroup 〈Sj〉 ofS gener-
ated by the element Sj ; αj and βj are the attracting and the repelling fixed points
of Sj , respectively. Integrating the series (26) and (27) termwise over the circles
{Cs}gs=1 we find the normalization of the differential under consideration:∫
Cs

dηzy = 0,

∫
Cs

dωmz = 0,

∫
Cs

dζj = 2πiδsj , z, y ∈ R(S), s, j = 1, . . . , g.
(29)

The so-called Schottky functions [7], [11], the exponentials of the integrals of the
series (26) and (28), can be effectively calculated

(u, v; z, y) := exp

∫ u
v

dηzy =
∏
S∈S

u− Sz
u− Sy :

v − Sz
v − Sy , (30)

Ej(u) := exp

∫ u
∞
dζj =

∏
S∈S|〈Sj〉

u− Sαj
u− Sβj

, j = 1, . . . , g, (31)

and are transformed by well-known formulae under the action of S:

(Sju, v; z, y) = (u, v; z, y)
Ej(z)

Ej(y)
, (32)

Es(Sju) = Es(u)Esj; (33)
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Elj , the exponential of the period of the holomorphic differential, has the represen-
tation

Elj = Ejl =
∏

S∈〈Sl〉|S|〈Sj〉

Sαj − αl
Sαj − βl

:
Sβj − αl
Sβj − βl

, l, j = 1, . . . , g, (34)

here we take the product over two-sided cosets in the group S and for j = l
the coefficient 0/∞ corresponding to S = 1 is replaced by the dilation coefficient
λl := Ṡl(αl).
A non-trivial meromorphic function on the orbit manifold of the group S can

be expressed in terms of the Schottky function.

Lemma 9. Let F (u) be an automorphic function with divisor
∑deg F
s=1 (zs − ys) in

the fundamental domain of the group S. Then the following representation holds:

F (u) = const

deg F∏
s=1

(u, ∗; zs, ys)
g∏
s=1

Emss (u), (35)

where ms ∈ Z is the increment of (2πi)−1 logF (u) over the cycle Cs. The deriva-
tives of the automorphic function F (u) with respect to the independent variable are
recursively calculated by the formula

Dm+1u F (u) =
m∑
l=0

(
l

m

)
·
(
Dm−lu F (u)

)
·Dlu
(degF∑
s=1

η̇zsys(u) +

g∑
s=1

msζ̇s(u)

)
. (36)

The series in η̇zy(u) :=
dηzy(u)

du
and ζ̇s(u) :=

dζs(u)

du
for the Dlu are absolutely

convergent.

Remark. The constraints imposed by Abel’s theorem on the divisor of F are
precisely the conditions for the automorphy of the right-hand side of (35).

Proof. We expand the differential dF/F in a sum of third-kind differentials and
holomorphic differentials:

dF

F
=

deg F∑
s=1

dηzsys +

g∑
s=1

ms dζs.

Integrating to u and exponentiating we arrive at (35). Differentiating repeatedly
the composite function

F (u) = exp

(∫ u
∗

dF

F

)
by the binomial formula we obtain (36). Effective expressions for the derivatives of
the differentials in the last formula can be derived from Riemann’s relations

η̇zy(u) = Du

∫ z
y

dηuw =

∫ z
y

dω1u, ζ̇j(u) =

∫ Sjw
w

dω1u for all w ∈ D(S).



Representation of moduli spaces of curves and calculation of extremal polynomials 491

Differentiating the required number of times with respect to the parameter under
the integral sign and integrating termwise we obtain series absolutely convergent
in D(S):

Dluη̇zy(u) = l!
∑
S∈S

{
(Sy − u)−l−1 − (Sz − u)−l−1

}
, (37)

Dluζ̇j(u) = l!
∑

S∈S|〈Sj〉

{
(Sβj − u)−l−1 − (Sαj − u)−l−1

}
. (38)

3.2. Variations of Abelian integrals. The Abelian integrals in the prescribed
limits and their periods are functions of the point in the deformation space Gkg(i).
For instance, the expressions∫ w

v

dηzy,

∫ w
v

dωmz,

∫ w
Sjw

dωmz,

∫ w
v

dζs,

∫ w
Sjw

dζs, s, j = 1, 2, . . . , g,

(39)
with fixed points z, y, v, w in the fundamental domain of a Schottky group S
depend on the modules {cs, rs}gs=1. A small perturbation {δcs, δrs}

g
s=1 of the mod-

uli results in small perturbations of the matrices Ĝs ∈ PGL2(R) corresponding to
the generators of the group G:

Ĝs :=

∥∥∥∥ cs ±r2s − c2s
1 −cs

∥∥∥∥ , δĜs := ∥∥∥∥ 1 −2cs0 −1

∥∥∥∥ δcs ± ∥∥∥∥ 0 2rs0 0

∥∥∥∥ δrs + o, s = 1, . . . , g;
(40)

the sign ± depends on the one of the sets, i or i′, containing the index s;

o := o

( g∑
s=1

|δcs|+ |δrs|
)
.

Theorem 7. The variations of the functions (39) are described by the formulae

δ

∫ w
v

dη =
1

2πi

g∑
s=1

∫
Cs

η̇(u)η̇vw(u) tr[M(u) · δĜs · Ĝ−1s ] du+ o, (41)

δ

∫ w
Sjw

dη =
1

2πi

g∑
s=1

∫
Cs

η̇(u)ζ̇j(u) tr[M(u) · δĜs · Ĝ−1s ] du+ o; (42)

all the objects on the right-hand sides of these equalities relate to the unperturbed
group, o := o

(∑g
s=1 |δcs| + |δrs|

)
, dη(u) := η̇(u) du is one of the differentials

dηzy, dζs, and dωmz, and M(u) := (u, 1)
t · (−1, u) ∈ sl2(C) is the Hejhal matrix.

Proof. In the special case i = ∅ the proof is presented in [4]; however, it can be
literally transferred to the case of general Schottky groups.

Remark. The use of quadrature formulae for the calculation of the right-hand sides
in (41) and (42) is inefficient because it requires summation of Poincaré series at
many points. A trick allowing one to calculate these integrals by summing series
only at 2g − 1 points is described in [4].
3.3. Parametric calculation of polynomials. For an illustration of Lemma 9
we find an effectively calculated parametric representation of extremal polynomials
under the assumption that Abel’s equations are satisfied.
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The circles C1, C2, . . . , Cg make up half the canonical basis of 1-cycles on the
compact curve Mc := D(S)/S. Hence [12] Abelian differentials on the curve can
be normalized by a prescription of their periods along these circles. In particular,
the differential dηM associated with the curve M with periods prescribed by Abel’s
equations (23) has the representation

dη := dηzy +

g∑
s=1

ms

n
dζs, z := G0u∞, y := u∞. (43)

It is now easy to obtain an expression for the Akhiezer function P̃n(u) from which
one can recover the extremal polynomial Pn by formula (25). In a similar way one
finds the independent variable x(u) defined in general up to affine motions. The
results of our calculations are collected in Table 1, in which we take into account
the form of the generator G0(u).

Table 1

0 ∈ i′ 0 ∈ i

Normalization of x(u) u = (0,1,∞)→ x = (0,∞,−1) u = (±i,∞)→ x = (±i,∞)

x(u) = −(u,∞; 0,1)(u,∞; 0,−1) i
x1 + 1

x1 − 1
, x1(u) := (u,∞;−i, i)2

P̃n(u) = (u,∞;−1, 1)n
g∏
j=1

E
mj
j (u) (u, i; 0,∞)n

g∏
j=1

(
Ej (u)

Ej (i)

)mj

Using formula (36) one can calculate the jets of the functions P̃n(u), x(u), and
therefore the derivatives Dmx Pn(x), m = 0, 1, 2, . . . , of the extremal polynomial.
In terms of the values of these derivatives at various points one can express the
constraints of the optimization problem: for instance, the two leading coefficients
of the polynomial are Pn(x)x

−n and (nPn(x)− xṖn(x))x1−n for u = u∞.
3.4. Abel’s equations in the space Gkg(i)Gkg(i)Gkg(i). Of course a meromorphic function
with divisor n(∞− − ∞+) does not exist on each curve M . Conditions for the
automorphy of the function P̃n(u) in Table 1 are equivalent to Abel’s equations (23).

Figure 5. Calculation of A∗ − JA∗, s ∈ i′, j ∈ i: (a) for 0 ∈ i′; (b) for 0 ∈ i

Lemma 10. Abel’s equations (23) are equivalent to the g real relations:

0 ∈ i′ 0 ∈ i

E2ns (1) = E
m1
1s E

m2
2s · · ·E

mg
gs , s = 1, . . . , g Ens (0)E

m1
1s E

m2
2s · · ·E

mg
gs = 1, s = 1, . . . , g
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Proof. We can formulate Abel’s equations as follows: the differential (43) normal-
ized by conditions (23) must have purely imaginary periods on the curve. This
condition holds on the cycles C1, C2, . . . , Cg in view of the normalization (29) of
the holomorphic differentials. Let Aj , j = 1, . . . , g, be an arc in R(S) ∩ H
joining the real point u ∈ G0Cj and Sju ∈ Cj . Using the intersection form one
can verify that the 2g cycles C1, . . . , Cg; A1, . . . , Ag form a basis in the lattice of
integral 1-cycles on the compact curve Mc := D(S)/S. We see from Fig. 5 that

Aj − JAj = χ(i, 0) · C−0 + χ(i, j) · C−j (mod 2H−1 (M,Z)), (44)

where χ(i, · ) is the characteristic function of the set i taking values 0 and 1. Since
the differential dη is real, taking account of normalization conditions (29), the
fact that the index mj is even for j ∈ i, and the congruence (44) we obtain
Im

∫
Aj

ndη ∈ 2πiZ. Hence the periods of dη are purely imaginary if and only

if exp

(∫
Aj

ndη

)
= 1, j = 1, . . . , g. The transformation rules (32), (33) for the

Schottky functions transform the remaining g relations into the form required in
the statement of the theorem.

3.5. Scheme of the algorithm. We now describe a protocol for the solution of
least deviation problems in the framework of our approach.

(1) Given the problem data, find the topological invariants g, k and the integer
indices m0, m1, . . . , mg corresponding to the solution Pn(x). This is related to
finding a low-dimensional face of the sphere {Qn(x) : ‖Qn‖E = const} in the space
of polynomials containing the solution Pn(x). The author knows of no algorithm
implementing this part of the protocol. The integer indices m0, m1, . . . , mg can be
guessed; sometimes one knows their asymptotic values as n → ∞, for instance, in
the problem of the least deviation of a monic polynomial on several intervals of the
real axis.

(2) Fix a partitioning of the index set {0, 1, . . ., g} = i ∪ i′. This produces a
realization of the universal covering space H̃kg as a subdomain of the Euclidean
space explicitly defined by the system of inequalities (7), (8).

(3) Make a descent from an arbitrary point in the moduli space onto the smooth
g-dimensional submanifold T of the domain Gkg(i) described by Abel’s equations in
Lemma 10. Locally, navigation in the moduli space is performed with the help of
variational formulae (41), (42) enabling one to implement Newton’s or other descent
methods.

(4) Using formulae (36) for derivatives of the automorphic functions and varia-
tional formulae for Abelian integrals find on T a pointM with polynomial satisfying
the constraints of the least deviation problem.

(5) Recover the solution Pn(x) from the associated curveM using the parametric
formulae in Table 1.

We plot the graphs of several extremal polynomials calculated by means of soft-
ware realizing parts (3)–(5) of the protocol in Fig. 6.
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Figure 6. The extremal polynomials P50(x) for g = 2, k = 3, 2, 1
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