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Abstract Eigenvalue problem for Poincare-Steklov-3 integral equation is re-
duced to the solution of three transcendential equations for three unknown
numbers, moduli of pants. The complete list of antisymmetric eigenfunctions
of integral equation in terms of Kleinian membranes is given.
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1 Introduction

Traditionally, integral equations are the subject of functional analysis and
operator theory. In the contrast we show that methods of complex geometry
and combinatorics are efficient for the study of the following singular integral
Poincare-Steklov (briefly, PS) equations

λ V.p.

∫

I

u(t)
t − x

dt − V.p.

∫

I

u(t) dR(t)
R(t) − R(x)

= const, x ∈ I := (−1, 1), (1)
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where λ is the spectral parameter; u(t) is the unknown function; const is
independent of x. The functional parameter R(t) of the equation is a given
smooth nondegenerate change of variable on the interval I:

0 <

∣∣∣∣ d
dt

R(t)

∣∣∣∣ < ∞, when t ∈ [−1, 1]. (2)

Under the assumption that R(t) =: R3(t) is a degree three rational function
with separate real critical values different from the endpoints of the interval I,
we give the constructive representation for the eigenvalues λ and eigenfunc-
tions u(x) of (1). First, we say a few words about the origin of PS integral
equations and the related background.

Spectral Boundary Value Problem Let a domain in the plane be subdivided
into two simply connected domains �1 and �2 by a smooth simple arc �.
We are looking for the values of the spectral parameter λ when the following
problem has nonzero solution:

Find a harmonic function Us in the domain �s, s = 1, 2, vanishing on the
outer portion of the boundary: ∂�s \ �. On the interface � the functions U1 and
U2 coincide while their normal derivatives dif fer by the factor of −λ:

−λ
∂U1

∂n
= ∂U2

∂n
. (3)

Applications Boundary value problems for the Laplace equation with spec-
tral parameter in the boundary conditions were first considered by H.Poincare
(1896) and V.A.Steklov (1901). The problems of this kind arise e.g. in the
analysis of diffraction, (thermo-) conductivity of composite materials and the
motion of two-phase liquids in porous medium.

This particular problem (3) arises in justification and optimization of domain
decomposition method for the solution of boundary values problems for elliptic
PDE. The eigenvalues λ of the spectral problem and the traces of eigenfunc-
tions U1 = U2 on the interface � are respectively the critical values and critical
points of the following functional, the ratio of two Dirichlet integrals

F(U) =
∫
�2

|∇U2|2 d�2∫
�1

|∇U1|2 d�1
, U ∈ H1/2

oo (�), (4)

where Us is the harmonic continuation of the function U from interface � to
the domain �s, s = 1, 2, vanishing at the outer boundary of the domain.

Integral Equation The reduction of the stated above boundary value problem
to the interface brings to the (1). Let Vs be the harmonic function conjugate to
Us, s = 1, 2. From Cauchy-Riemann equations and (3) it follows that tangent to
the interface derivatives of V1 and V2 differ by the same factor −λ. Integrating
along � we get

λV1(y) + V2(y) = const, y ∈ �. (5)
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For the half-plane the boundary values of conjugate harmonic functions are
related via Hilbert transform. To take advantage of this transformation we
consider a conformal mapping ωs(y) from �s to the open upper halfplane H

with normalization ωs(�) = I, s = 1, 2. Now (5) may be rewritten as

− λ

π
V.p.

∫

I

U1(ω
−1
1 (t))

t − ω1(y)
dt − 1

π
V.p.

∫

I

U2(ω
−1
2 (t′))

t′ − ω2(y)
dt′ = const, y ∈ �.

Introducing new notation x := ω1(y) ∈ I; R := ω2 ◦ ω−1
1 : I → � → I; u(t) :=

U1(ω
−1
1 (t)) and the change of variable t′ = R(t) in the second integral, we arrive

at the Poincare-Steklov (1). Note that here R(t) is the decreasing function
on I.

Operator analysis of two equivalent spectral problems, boundary value
problem (3) and Poincare-Steklov (1), may be found e.g. in [1, 2]. Here we
only mention that the spectrum is discreet if (2) holds, the eigen values are
positive and converge to λ = 1.

Philosophy of the Research The aim of our study is to give explicit expressions
for the eigen pairs (λ, u) of the PS integral equation. For the rational degree
two functions R(x) = R2(x) the eigen pairs were expressed in terms of elliptic
functions [3]. Next natural step is to consider degree three rational functions.

Here the notion of explicit solution should be specified. Usually this term
means an answer in terms of elementary function of parameters or a quadrature
of it or an application of other permissible operations in the spirit of Umemura
classical functions. The history of mathematics however knows many disap-
pointing results when the solution of the prescribed form does not exist. The
nature always forces us to introduce new types of transcendent objects to
enlarge the scope of search. Cf.: “Mais cette étude intime de la nature des
fonctions integrales ne peut se faire que par l’introduction de transcendantes
nouvelles” [4].

Take for instance the algebraic equations. The ancients were able to solve
quadratic equations. But after the invention of the formulas for cubic and
quartic equations in the 16th century no progress was made until the 19th
century when it became clear that no formula including arithmetic operations
and radicals only can solve equations of higher orders. After that Ch.Hermite
and L.Kronecker suggested formulae involving elliptic modular function to
find the roots of degree five equations. The ideas of C.Jordan elaborated by
H.Umemura resulted in a formula (involving hyperelliptic integrals and theta
constants) for the roots of arbitrary degree polynomial.

In modern mathematical physics it is very often that the problems are
“explicitly” solved in terms of suitable transcendential functions, say solutions
of Painleve equations. From the philosophical point of view our goal is to study
the nature of the solutions of integral (1) and the means for their constructive
representation.
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Brief Description of the Result Given rational degree three function R3(t),
we explicitly associate it to a pair of pants in Section 2.3. On the other hand,
given spectral parameter λ and two auxiliary real parameters, we explicitly
construct in Section 4 another pair of pants which additionally depend on one
or two integers. When the above two pants are conformally equivalent, λ is the
eigenvalue of the PS integral equation with parameter R3(x). Essentially, this
means that to find the spectrum of the given integral (1) one has to solve three
transcendential equations involving three moduli of pants.

Whether this representation of the solutions may be considered as a con-
structive or not is a matter of a discussion. Two arguments in favour: today
it is possible to numerically evaluate the conformal structure of surfaces (e.g.
via circle packing). Also, this representation allows us to conceive the valuable
features of the solution: to find the number of zeroes of eigenfunction u(t), to
localize the spectrum and to show the discrete mechanism of generating the
eigenvalues.

2 Space of PS-3 Equations

In what follows we consider integral equations (1) with rational degree three
real functional parameter R(x) = R3(x) and call such equations PS-3. We
restrict ourselves to the case when R3(x) has four distinct real critical values
dif ferent from ±1. Other possible configurations are discussed in [11]. The
details of our further constructions depend on the topological properties of
functional parameter of the integral equation. One may encounter one of five
described in Section 2.2 typical situations A, B1, B21, B22, B23 corresponding
to the components in the space of admissible functions R3(x).

2.1 Topology of the Branched Covering

Degree three rational function R3(x) defines the three- sheeted branched
covering of a Riemann sphere by another Riemann sphere. The Riemann-
Hurwitz formula suggests that R3(x) typically has four separate branch points
as, s = 1, 4. This means that every value as is covered by a critical point bs, and
an ordinary point cs. We have assumed that all four points as are distinct, real
and differ from ±1.

Every point y �= as of the extended real axis R̂ := R ∪ {∞} belongs to
exactly one of two types. For the type (3:0) the pre-image R−1

3 (y) consists of
three distinct real points. For the type (1:2) the pre-image consists of a real
and two complex conjugate points. The type of the point is locally constant on
the extended real axis and changes when we step over the branch point. Let
the branch points as be enumerated in the natural cyclic order of R̂ so that
the intervals (a1, a2) and (a3, a4) are filled with the points of the type (1:2). We
specify the way to exclude the relabeling a1 ↔ a3, a2 ↔ a4 of branch points in
Section 2.2.
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Fig. 1 The topology of the covering R3 with real branch points

The total pre-image R−1
3 (R̂) consists of the extended real axis and two pairs

of complex conjugate arcs intersecting R̂ at points b 1, b 2, b 3, b 4 as shown
at the left side of Fig. 1. The compliment of this pre-image on the Riemann
sphere has six components, each of them is mapped 1-1 onto upper or lower
half plane. Note that the points b 1, c4, c3, b 2... on the left picture of Fig. 1 may
follow in inverse order as well.

2.2 Classification of Parameters R3

The functional parameter R3(x) is a nondegenerate change of variable on the
segment [−1, 1]. This in particular means that no critical point bs belongs to
this segment. So exactly one of two cases is realized:1

Case A : [−1, 1] ⊂ [b 2, b 3],
Case B : [−1, 1] ⊂ [b 3, b 4]. (6)

Remaining possibilities (like [−1, 1] ⊂ [b 1, b 2]) are reduced either to A or B
by the clever choice of labeling the branch points as—see Section 2.1. For the
case B it is important whether [−1, 1] intersects [c2, c1] or not. So we consider
two subcases:

Case B1 : [−1, 1] ∩ [c2, c1] = ∅,

Case B2 : [−1, 1] ∩ [c2, c1] �= ∅.
(7)

The case B2 in turn is subdivided into three subcases:

Case B21 : [−1, 1] ⊂ [c2, c1],
Case B22 : [−1, 1] ⊃ [c2, c1],
Case B23 : all the rest.

(8)

2.3 Pair of Pants Associated to R3

For the obvious reason, a pair of pants is the name for the Riemann sphere
with three holes in it. Pair of pants may be conformally mapped to Ĉ with three
nonintersecting real slots. This mapping is unique up to real linear-fractional
mappings. The conformal class of pants with labelled boundary components
depends on three real parameters varying in a cell.

1Two points on a circle (extended real axis) define two segments. It should be clear which segment
we mean: e.g. b 1, b 2 �∈ [b 3, b 4]; b 1, b 4 �∈ [b 2, b 3], etc.
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Definition To every PS-3 equation we associate the pair of pants:

P(R3) := Cl
(
Ĉ \ {([−1, 1]�[a1, a2]) ∪ [a3, a4]}

)
(9)

where � is the symmetric difference (union of two sets minus their intersec-
tion). Closure here and everywhere below is taken with respect to the intrinsic
spherical metric when every slot acquires two banks. Boundary components of
pants are colored in accordance with the palette:

[−1, 1] \ [a1, a2] – red
[a1, a2] \ [−1, 1] – blue
[a3, a4] – green

Thus obtained pair of pants will have boundary ovals of all three colors, but
in cases B21 (green and two blue ovals) and B22 (green and two red ovals).
Note that in case A the red, green and blue slots always follow in the natural
cyclic order of the extended real axis.

2.4 Gauge Transformations

There is a two-parametric transformation of the functional parameter R(x)

which essentially does not affect the spectral characteristics of integral
equation (1). Let us recall that R(x) is not uniquely determined by two domains
�1 and �2. Pre- and post- composition with linear-fractional transformations
preserving the segment [−1, 1] is admissible. The general appearance of such a
mapping is

L±
α (t) := ± t + α

αt + 1
, α ∈ (−1, 1). (10)

Lemma 1

1. The gauge transformation R → L±
α ◦ R does not change neither eigenvalues

λ nor the eigenfunctions u(t) of any PS integral equation.
2. The gauge transformation R → R ◦ L±

α does not change the eigenvalues λ

and slightly changes the eigenfunctions: u(t) → u(L±
α (t)).

Proof To simplify the notations we put L(t) := L±
α (t).

1. The gauge transformation just adds a constant term to the right hand side
of equation.

∫ 1

−1

u(t)dL(R(t))
L(R(t)) − L(R(x))

=
∫ 1

−1

u(t)L′(R(t))dR(t)
[L′(R(t))L′(R(x))]1/2(R(t) − R(x))

=
∫ 1

−1

u(t)dR(t)
R(t) − R(x)

−
∫ 1

−1

u(t)dR(t)
R(t) − L−1(∞)

.
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2. We define the new variable x∗ := L(x) and the new function u∗(x∗) :=
u(x).

∫ 1

−1

u(t)dR(L(t))
R(L(t)) − R(L(x))

= ±
∫ 1

−1

u∗(t∗)dR(t∗)
R(t∗) − R(x∗)

,

∫ 1

−1

u(t)dt
t − x

= ±
∫ 1

−1

u∗(t∗)dL−1(t∗)
L−1(t∗) − L−1(x∗)

= ±
∫ 1

−1

u∗(t∗)dt∗
t∗ − x∗

∓
∫ 1

−1

u∗(t)dt
t − L(∞)

.

��

We see that essentially the space of PS − 3 equations has real dimension 3,
the same as the dimension of the moduli space of pants. It is easy to check the
following:

• Any gauge transformation of the parameter R3(x) does not change the
type (A, B1, . . . ) of integral equation.

• The transformation R3 → R3 ◦ L±
α does not change the associated pants

(9) and preserves the colors of the boundary ovals.
• Associated to functional parameter L±

α ◦ R3 are the pants L±
α P(R3). The

colors of the boundary ovals are transferred by L±
α , but in one case. When

the type of integral equation is A, the transformation L−
α interchanges blue

and green colours on the boundaries.

2.5 Reconstruction of R3(x) from the Pants

The parameter R3(x) of integral equation may be reconstructed, given the
pants P(R3) and the type A, B1 . . . of the equation. One has to follow the
routine described below.

Restore the Labeling of the Branch Points In case B2 we temporarily paint
the real segment separating two non-green slots in blue. The (extended) blue
segment is set to be [a1, a2]; the green segment is [a3, a4]. The relabeling
a1 ↔ a2 and a3 ↔ a4 is eliminated by the natural cyclic order of the points
a1, a2, a3, a4 on the extended real axis.

Normalized Covering Let La be the unique linear-fractional map sending the
points a1, a2, a3, a4 to respectively 0, 1, a > 1, ∞. The conformal motion Lb of
the covering Riemann sphere sends the critical points b 1, b 2, b 3, b 4 of R3(x)

(unknown at the moment) to respectively 0, 1, b > 1, ∞. The function La ◦
R3 ◦ L−1

b with the normalized critical points and critical values takes a simple
form:

R̃3(x) = x2L(x),

with real linear fractional function L(x) satisfying the restrictions:

L(1) = 1, L′(1) = −2,

L(b) = a/b 2, L′(b) = −2a/b 3.
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We got four equations for three parameters of L(x) and the unknown b . The
first two equations suggest the following expression for the linear-fractional
function:

L(x) = 1 + 2
(c − 1)(x − 1)

x − c
.

The other two equations are solved parametrically in terms of c:

b(c) = c
3c − 2

2c − 1
; a(c) = c

(3c − 2)3

2c − 1
.

Given a > 1, there are exactly two real solutions of the equation a(c) = a. One
of the solutions c lies in the segment (1/3, 1/2), the other lies in (1, ∞). In
the case c ∈ (1/3, 1/2) the segments La(a1, a2) = (0, 1) and La(a3, a3) = (a, ∞)

are filled with the points of the type (1:2), which corresponds to our choice of
labelling the branchpoints in Section 2.1. The solution c ∈ (1, ∞) is a fake as
the same segments bear the points of the type (3:0). Both functions b(c) and
a(c) increase from 1 to ∞ when the argument c runs from 1/3 to 1/2.

Reconstruction of the Mapping Lb In case A the red, green and blue slots
follow in the natural cyclic order. Hence, the segment La[−1, 1] is a subset of
the interval (1, a). We choose the unique component of the pre-image R̃3

−1

of the segment La[−1, 1] belonging to the interval (1, b) – see Fig. 2. For the
case B the segment La[−1, 1] is a subset of the ray (−∞, a) and we choose
the pre-image of this segment which lie in (b , ∞). The requirement: Lb maps
[−1, 1] to the chosen segment determines this map up to a pre-composition
with the function (10).

We see that given the pants P(R3), the functional parameter is recovered up
to a gauge transformation R3 → R3 ◦ L±

α . It is not difficult to check, that the
described above procedure applied to the pair of pants L±

β P(R3) (in case A
and the mapping L−

β reversing the orientation of real axis we additionally have

Fig. 2 The graph of R̃3(x)

when c ∈ ( 1
3 , 1

2 )

c 1 b x

1

a
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to exchange the blue and green colors of the slots) returns the covering map
L±

β ◦ R3 ◦ L±
α . Roughly speaking, the classes of gauge transformation of R3(x)

correspond to the conformal classes of pants with suitably colored boundary
components and each conformal class of pants corresponds to a class of certain
functional parameter R3(x).

3 Reduction to Projective Structures

PS integral equations possess rich geometrical content [10, 11] which we
disclose in this section. We describe a three-step reduction of the integral
equation to a certain problem [11] for projective structures on a riemann
surface which has essentially combinatorial solution.

3.1 Step 1: Functional Equation

Let us expand the kernel of the second integral in (1) into a sum of elementary
fractions:

R′
3(t)

R3(t) − R3(x)
= d

dt
log(R3(t) − R3(x)) =

3∑
k=1

1

t − zk(x)
− Q′

Q
(t), (11)

where Q(t) is the denominator in noncancellable representation of R3(t) as the
ratio of two polynomials; z1(x) = x, z2(x), z3(x)—are all solutions (including
multiple and infinite) of the equation R3(z) = R3(x). This expansion suggests
to rewrite the original equation (1) as certain relationship for the Cauchy-type
integral


(x) :=
∫

I

u(t)
t − x

dt + const∗, x ∈ Ĉ \ [−1, 1]. (12)

Known 
(x), the solution u(t) may be recovered by the Sokhotskii-Plemelj
formula:

u(t) = (2π i)−1 [
(t + i0) − 
(t − i0)] , t ∈ I. (13)

The constant term const∗ in (12), which we assume to be

const∗ := 1

λ − 3

⎡
⎣
∫

I

u(t)Q′(t)
Q(t)

dt − const

⎤
⎦ (14)

is introduced to cancel the constant terms arising after substitution of expres-
sion (12) to the equation (1). In this way the following result was proven [10]:

Lemma 2 For λ �= 1, 3 the transformations (12) and (13) bring about a one-to-
one correspondence between the Hölder’s eigenfunctions u(t) of PS-3 integral
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equation and the holomorphic on the Riemann sphere outside the slot [−1, 1]
nontrivial solutions 
(x) of the functional equation


(x + i0) + 
(x − i0) = δ

(

(z2(x)) + 
(z3(x))

)
, x ∈ I, (15)

δ = 2/(λ − 1), (16)

with Hölder boundary values 
(x ± i0) at the banks of the slot [−1, 1].

3.2 Step 2: Riemann Monodromy Problem

In this section we reduce our functional (and therefore integral) equation to
the Riemann monodromy problem in the following form. Find a holomorphic
vector W(y) = (W1, W2, W3)

t on the slit sphere P(R3) \ [−1, 1] whose bound-
ary values on the opposite sides of every slot are related by the constant matrix
specif ied for each slot.

3.2.1 Monodromy Generators

To formulate the Riemann monodromy problem we introduce 3 × 3 permuta-
tion matrices

D1 :=
1 0 0
0 0 1
0 1 0

; D2 :=
0 0 1
0 1 0
1 0 0

; D3 :=
0 1 0
1 0 0
0 0 1

(17)

and a matrix depending on the spectral parameter λ:

D :=
−1 δ δ

0 1 0
0 0 1

, δ = 2/(λ − 1). (18)

Lemma 3 Matrices D1, D2, D3, D, D1D = DD1 have order two as GL3 group
elements.

3.2.2 Separating Branches of R−1
3

Let domain O be the compliment to the segments [a1, a2] and [a3, a4] on
the Riemann sphere. The pre-image R−1

3 O consists of three components O j,
j = 1, 2, 3, mapped one-one to O—see Fig. 1. Two of the components are
(topological) discs with a slot and the third is an annulus. The enumeration
of domains O j is determined by the following rule: the segment [−1, 1] lies in
the closure of O1, the segment [c3, c4] lies on the border of O2.
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3.2.3

Let u(x) be the solution of integral equation (1) in the case A. We consider the
vector

W(y) = (
(x1), 
(x2), 
(x3))
t, y ∈ O \ [−1, 1], (19)

where 
(x) is from (12) and xs is the unique solution of the equation R3(xs) =
y in Os. Vector W(y) will be holomorphic and bounded in the domain O \
[−1, 1] as all three points xs, s = 1, 2, 3, remain in the holomorphy domain of
the function 
(x). We claim that

W(y + i0) = DW(y − i0), when y ∈ [−1, 1],
W(y + i0) = D3W(y − i0), when y ∈ [a1, a2],
W(y + i0) = D2W(y − i0), when y ∈ [a3, a4].

Indeed, let y+ := y + i0 and y− := y − i0 be two points on the opposite
banks of [a1, a2]. Their inverse images x+

3 = x−
3 , x±

1 = x∓
2 lie outside the cut

[−1, 1]. Hence W(y+) = D3W(y−). For two points y± lying on the opposite
banks of the slot [a3, a4], their inverse images satisfy the relations x+

2 = x−
2 ,

x±
1 = x∓

3 , which means W(y+) = D2W(y−). Finally, let y± lie on the banks of
[−1, 1]. Now two points x+

2 = x−
2 and x+

3 = x−
3 lie in the holomorphy domain of


(x) while x+
1 and x−

1 appear on the opposite sides of the cut [−1, 1]. According
to the functional equation (15),


(x+
1 ) = −
(x−

1 ) + δ(
(x−
2 ) + 
(x−

3 )),

therefore W(y+) = DW(y−) holds on the slot [−1, 1].

3.2.4

Conversely, let W(y) = (W1, W2, W3)
t be the bounded solution of the

Riemann monodromy problem stated above. We define a piecewise holomor-
phic function on the Riemann sphere:


(x) := Ws(R3(x)), when x ∈ Os \ R−1
3 [−1, 1], s = 1, 2, 3. (20)

From the boundary relations for the vector W(y) it immediately follows that
the function 
(x) has no jumps on the lifted cuts [a1, a2], [a3, a4], [−1, 1]
apart from the cut [−1, 1] from the upper sphere. Say, if the two points
y± lie on the opposite sides of the cut [a1, a2], then W3(y+) = W3(y−) and
W1(y±) = W2(y∓) which means that the function 
(x) has no jump on the
components of R−1

3 [a1, a2]. From the boundary relation on the cut [−1, 1] it
follows that 
(x) is the solution for the functional equation (15). Therefore it
gives a solution of Poincare- Steklov integral equation with parameter R3(x).
Combining formulae (13) with (20) we get the reconstruction rule

u(x) = (2π i)−1

(
W1(R3(x) + i0) − W1(R3(x) − i0)

)
, x ∈ [−1, 1]. (21)
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3.2.5

We have just proved for the case A the following

Theorem 1 [11] If λ �= 1, 3 then two formulas (19) and (21) implement the
one-to-one correspondence between the solutions u(x) of the integral equation
(1) and the bounded solutions W(y) of the Riemann monodromy problem in the
slit sphere Ĉ \ {[a1, a2] ∪ [a3, a4] ∪ [−1, 1]} with the following matrices assigned
to the slots:

[−1, 1] \ [a1, a2] [a1, a2] \ [−1, 1] [a3, a4] [−1, 1] ∩ [a1, a2]
Case A : D D3 D2

Case B1 : D D1 D2

Case B2 : D D1 D2 D1D = DD1

(22)

3.2.6 Monodromy Invariant

It may be checked that the matrices D, D1, D2, D3 generating the monodromy
group for the solution W(y) are pseudo-orthogonal, that is preserve the same
quadratic form

J(W) :=
3∑

k=1

W2
k − δ

3∑
j<s

W jWs. (23)

This form is not degenerate unless −2 �= δ �= 1, or equivalently 0 �= λ �= 3.
Since the solution W(y) of our monodromy problem is bounded near the cuts,
the value of the form J(W) is independent of the variable y. Therefore the
solution ranges either in the smooth quadric {W ∈ C

3 : J(W) = J0 �= 0}, or
the cone {W ∈ C

3 : J(W) = 0}.

3.2.7 Geometry of Quadric Surface

The nondegenerate projective quadric {J(W) = J0} contains two families of
line elements which for convenience we denote by the signs ′+′ and ′−′. Two
different lines from the same family are disjoint while two lines from different
families intersect. The intersection of those lines with the ’infinitely distant’
secant plane gives points on the conic

{(W1 : W2 : W3)
t ∈ CP

2 : J(W) = 0} (24)

which by means of stereographic projection p may be identified with the
Riemann sphere. Therefore we have introduced two global coordinates p±(W)

on the quadric, ’infinite part’ of which (i.e. conic (24)) corresponds to coincid-
ing coordinates: p+ = p− (see Fig. 3).
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Fig. 3 Global coordinates p+
and p− on quadric

To obtain explicit expressions for the coordinate change W ↔ p± on
quadric we bring the quadratic form J(W) to the simpler form J•(V) :=
V1V3 − V2

2 by means of the linear coordinate change

W = KV (25)

where

K := (3δ + 6)−1/2
1 1 1
1 ε2 ε

1 ε ε2
·

0 μ−1 0
0 0 1
1 0 0

, (26)

ε := exp(2π i/3), μ :=
√

δ − 1

δ + 2
=
√

3 − λ

2λ
.

Translating the first paragraph of the current section into the language of
formulae we get

p±(W) := V2 ± i
√

J0

V1
= V3

V2 ∓ i
√

J0
; (27)

and inverting this dependence,

W(p+, p−) = 2i
√

J0

p+ − p− K

⎛
⎝ 1

(p+ + p−)/2
p+ p−

⎞
⎠ . (28)

The point W(p+, p−) with coordinate p+ (resp. p−) being fixed moves along
the straight line with the directing vector K(1 : p+ : (p+)2) (resp. K(1 : p− :
(p−)2)) belonging to the conic (24).
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Lemma 4 There exists a (spinor) representation χ : O3(J) → PSL2(C) such
that:

1) The restriction of χ(·) to SO3(J) is an isomorphism to PSL2(C).
2) For coordinates p± on the quadric the following transformation rule holds:

p±(TW) = χ(T)p±(W), T ∈ SO3(J),

p±(TW) = χ(T)p∓(W), T ∈ O3(J) \ SO3(J).
(29)

3) The linear-fractional mapping χp := (ap + b)/(cp + d) is the image of the
matrix:

T := 1

ad − bc
K

d2 2cd c2

bd ad + bc ac
b 2 2ab a2

K−1 ∈ SO3(J). (30)

4) The generators of the monodromy group are mapped to the following
elements:

χ(Ds)p = ε1−s/p, s = 1, 2, 3;
χ(D)p = μp − 1

p − μ
.

(31)

Proof We define the action of matrix A ∈ SL2(C) on the vector V ∈ C
3 by

the formula:

A := a b
c d

: V3 V2

V2 V1
−→ A

V3 V2

V2 V1
At. (32)

It is easy to check that (32) gives the faithful representation of connected 3-
dimensional group PSL2(C) := SL2(C)/{±1} into SO3(J•) and therefore, an
isomorphism. Let us denote χ• the inverse isomorphism SO3(J•) → PSL2(C)

and let χ(±T) := χ•(K−1TK) for T ∈ SO3(J). The obtained homomorphism
χ : O3(J) → PSL2(C) will satisfy statement 1) of the lemma.

To prove 2) we replace vector V components in the right-hand side of (32)
with their representation in terms of the stereographic coordinates p±:

i
√

J0

p+ − p− A
[
(p+, 1)t · (p−, 1) + (p−, 1)t · (p+, 1)

]
At

= i
√

J0
(cp+ + d)(cp− + d)

p+ − p−
[
(χp+, 1)t · (χp−, 1) + (χp−, 1)t · (χp+, 1)

]

= i
√

J0

χp+ − χp−
[
(χp+, 1)t · (χp−, 1) + (χp−, 1)t · (χp+, 1)

]

= V3(χp+, χp−) V2(χp+, χp−)

V2(χp+, χp−) V1(χp+, χp−)
,
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where we set χp := (ap + b)/(cp + d). Now (29) follows immediately for T ∈
SO3(J). It remains to check the transformation rule for any matrix T from the
other component of the group O3(J), say T = −1.

Writing the action (32) component-wise we arrive at conclusion 3) of the
lemma.

An finally, expressions 4) for the generators of monodromy group may be
obtained either from analyzing formula (30) or finding the eigenvectors of
the matrices Ds, D which correspond to the fixed points of linear- fractional
transformations. ��

3.3 Step 3: Projective Structures

Speaking informally, a (branched) complex projective structure [5–9] on the
Riemann surface M is a meromorphic function p on the universal cover M̃ of
the surface that transforms linear fractionally under the deck transformations.
The appropriate representation π1(M) → PSL2(C) is called the monodromy
of the structure p. The projective structure is called branched when p has
critical points. The set of all critical points of p(t) with their multiplicities
survives under the cover transformations of M̃. The projection of this set to
the Riemann surface M is known as the branching divisor D(p) of projective
structure and the branching number of the structure p(t) is degD(p). The
classical examples of unbranched projective structures arise in Fuchsian or
Schottky uniformization of Riemann surfaces.

3.3.1 Projective Structures Generated by Eigenfunction

Stereographic coordinates p±(y) := p±(W(y)) for the solution of the Riemann
monodromy problem (22) will give two nowhere coinciding meromorphic
functions in the sphere with three possibly overlapping slots. As it follows
from the transformation rules (29), the boundary values of two functions p±(y)

on the slot D∗, one of [a1, a2] \ [−1, 1], [−1, 1] \ [a1, a2], [a1, a2] ∩ [−1, 1] or
[a3, a4], are related by the formulas

p±(y + i0) = χ(D∗)p∓(y − i0), y ∈ D∗ �= [a1, a2] ∩ [−1, 1],
p±(y + i0) = χ(DD1)p±(y − i0), y ∈ [a1, a2] ∩ [−1, 1], (33)

where D∗ is the matrix assigned to the slot D∗ in (22).
Relations (33) allow us to analytically continue both functions p+(y) and

p−(y) through any slot to locally single valued functions on the genus 2
Riemann surface

M :=
{

w2 = (y2 − 1)

4∏
s=1

(y − as)

}
, (34)

since all matrices D∗ are involutive—see Lemma 3. Further continuation
gives single valued functions p±(·) on the universal covering M̃. Traveling
of the argument y along the handle of the surface M may result in the
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linear- fractional transformation of the value p±(y). Say, the continuations of
p+(y) from the pants through the red and green slots will give two different
functions on the second sheet related by the linear-fractional mapping χ(DD2).

3.3.2 Branching of Structures p±

The way we have carried out the continuation of functions p±(y) suggests
that the branching divisors of the arising projective structures are related via
formula:

D(p+) = HD(p−) (35)

where H(y, w) := (y, −w) is the hyperelliptic involution of the surface M. We
determine the branching numbers of the structures in the proof of

Theorem 2 [11] When λ �∈ {0, 1, 3} the solutions u(x) of the PS-3 integral
equation are in one-one correspondence with the couples of meromorphic in
the slit sphere Ĉ \ {[a1, a2] ∪ [a3, a4] ∪ [−1, 1]} functions p±(y) with boundary
values satisfying (33) and either non or two critical points in common. The
correspondence u(x) → p±(y) is implemented by the sequence of formulae (12),
(19) and (27). The inverse dependence is given up to proportionality by the
formula

u(x) =
√

�(y)

dp+(y)dp−(y)
(p+(y)p−(y) − μ(p+(y) + p−(y)) + 1), (36)

where x ∈ [−1, 1] and y := R3(x) + i0, �(y) = (y − y1)(y − y2)
(dy)2

w2(y)
is the

holomorphic quadratic dif ferential on the Riemann surface M with zeroes at the
critical points of the (possibly coinciding) functions p+ and p−, or with double
zeroes y1 = y2 (otherwise arbitrary) when p+ = p− is unbranched.

Remark The number of the critical points of the structures in the slit sphere
is counted with their weight and multiplicity: 1) the branching number of
p±(y) at the branch point a ∈ {±1, a1, . . . , a4} of the surface M is computed
with respect to the local parameter z = √

y − a, 2) every critical point on the
boundary should be considered as a half-point.

Proof

1. Let u(x) be an eigenfunction of integral equation PS-3. The stereographic
coordinates p±(y) of the solution W(y) of the associated Riemann mon-
odromy problem are nowhere equal meromorphic functions when the
invariant J0 �= 0, or two identically equal functions when J0 = 0. In any
case they inherit the boundary relationship (33).
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What remains is to find the branching numbers of the entangled structures
p±(y). To this end we consider the O3(J)-invariant quadratic differential form
J(dW) = J•(dV) transferred to the slit sphere.

In the general case J0 �= 0 we get (up to proportionality) the Kleinian
quadratic differential:

�(y) = dp+(y)dp−(y)

(p+(y) − p−(y))2
, y ∈ Ĉ. (37)

This expression is the infinitesimal form of the cross ratio, hence it remains
unchanged after the same linear-fractional transformations of the functions
p+ and p−. Therefore, (37) is a well defined quadratic differential on the
entire sphere. Lifting �(y) to the surface M we get a holomorphic differential.
Indeed, p+ �= p− everywhere and applying suitable linear-fractional trans-
formation we assume that p+ = 1 + zm+ + {terms of higher order} and p− =
czm− + ... in terms of local parameter z of the surface, m± � 1, c �= 0. Then
� = cm+m−zm++m−−2(dz)2 + {terms of higher order}. Therefore

D(p+) + D(p−) = (�).

Any holomorphic quadratic differential on genus 2 surface has 4 zeroes. The
curve M consists of two copies of the slit sphere interchanged by the hyperellip-
tic involution H. Taking into account the symmetry (35) of branching divisors,
we see that the structures p± together have two critical points in the slit sphere.

In the special case J0 = 0 two structures merge: p±(y) =: p(y) and the same
quadratic differential J(dW) = J•(dV) on the curve M has the appearance:

�(y) = [V1(y)dp(y)]2, (38)

here V1(y) is the first component in the vector V(y) defined by formula (25).
The analysis of this representation in local coordinates suggests that

2D(p) + 2(W) = (�), (39)

where (W) is the divisor of zeroes of the locally holomorphic (but globally
multivalued) on M vector W(y). To characterize (W) we need the following
lemma, which we prove at the end of the current section.

Lemma 5 The vector W(y) cannot have simple zeroes at the f ixed points of the
hyperelliptic involution of M when J0 = 0 and λ �= 0, 3.

The divisor (W) is obviously invariant under the hyperelliptic involution H.
From this Lemma it follows that either (W) = 0 (therefore degD(p) = 2) or
(W) consists of two points interchanged by H (therefore the structure p is
unbranched). In other words, p(y) has the branching number 0 or 1 on the
slit sphere and the quadratic differential � is a square of a holomorphic linear
differential.

2. Conversely, let p+(y) and p−(y) be two not identically equal meromor-
phic functions on the slit sphere, with boundary conditions (33) and the



122 A.B. Bogatyrev

total branching number either zero or two (see remark above). For the
meromorphic quadratic differential (37) on the Riemann surface M we
establish (using local coordinate on the surface) the inequality:

D(p+) + D(p−) � (�) (40)

where the deviation from equality means that there is a point where p+ =
p−. But the degree of the divisor on the left of (40) is zero or four and
deg(�) = 4. Therefore, p+ �= p− everywhere (and the total branching of
this pair of functions in the slit sphere is two).
The holomorphic vector W(p+(y), p−(y)) in the slit sphere solves the
Riemann monodromy problem specified in Theorem 1. We already know
how to convert the latter vector to the eigenfunction of integral equation
PS-3. Careful computation gives the restoration formula

2πu(x) =
√

(δ + 2)J0

3

p+(y)p−(y) − μ(p+(y) + p−(y)) + 1

p+(y) − p−(y)
, (41)

where x ∈ [−1, 1] and y := R3(x) + i0. Formula (36) appears after the
substitution of (37) to the latter formula.
Finally, suppose that two functions p±(y) with necessary branching and
boundary behaviour are identical. For the solution on the cone, V =
V1 (1, p, p2)t and the first component V1 may be taken from (38).
Therefore we consider the vector on the slit sphere:

W(y) := (y − y1)

w(y)p′(y)
K(1, p(y), p2(y))t, (42)

where y1 is the critical point of p(y) or arbitrary point when p(y) is
unbranched. One immediately checks that it is holomorphic and solves
the Riemann monodromy problem specified in Theorem 1. Now to find
the corresponding eigenfunction is a routine task. ��

Proof of Lemma 5 Let the hyperelliptic involution H changes the sign of
the local coordinate z defined in the vicinity of the fixed point z = 0 of the
involution. Boundary relationship of the vector W on the slots implies the
symmetry:

W(−z) = D∗W(z) (43)

where D∗ is one of the matrices D1, D2, D3 or D. Suppose that W has a simple
zero at the fixed point: W(z) = W−z + {terms of higher order}. We immedi-
ately see that W− �= 0 is the eigenvector of D∗ corresponding to eigenvalue −1
of this matrix. Another obvious property of this vector: J(W−) = 0.

The matrix D∗ has the invariant (complex) plane corresponding to the
double eigenvalue +1. The nullset of the quadratic form J(·) on this plane
is nontrivial, in other words there is an eigenvector W+ = D∗W+ �= 0 lying in
the cone: J(W+) = 0. The chain of equalities is valid:

J(W+, W−) = J(D∗W+, D∗W−) = −J(W+, W−) = 0,
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where J(·, ·) is the bilinear form polar to the quadratic form J(·). Now we see
that the cone contains the entire plane generated by the vectors W+ and W−.
Therefore, the quadratic form J(·) is degenerate which only happens when
λ = 0, 3. ��

3.4 Mirror Symmetry of Solution

In what follows we are looking for real solutions u(x) of the integral equa-
tion (1). There is no loss of the generality. Indeed, the restrictions on the
monodromy of projective structures [11] imply that the spectrum of any PS-
3 integral equation belongs to the segment [0, 3]. Now both real and imaginary
parts of any complex eigenfunction u(x) are the solutions of the integral
equation.

Real solutions u(x) of the integral equation correspond to the solutions
of Riemann monodromy problem with mirror symmetry: W(ȳ) = W(y).
This symmetry for the vector V(y) := K−1W(y) takes the form V(ȳ) =
(V3(y) sign(δ + 2), (V2(y) sign(δ − 1), (V1(y) sign(δ + 2)). The values δ + 2 and
δ − 1 have the same sign as it follows from the range of spectral parameter
λ ∈ [0, 3]. Therefore, real solutions are split into two classes depending on the
sign of (δ + 2)J0:

Symmetric ((δ+2)J0 >0), p±(ȳ)=1/p±(y)

Antisymmetric ((δ+2)J0 �0), p±(ȳ)=1/p∓(y)
, y ∈ P(R3) \ [−1, 1],

In the remaining part of the article we give explicit parametrization of
all antisymmetric solutions for the integral PS-3 equations of the considered
type—when six points ±1, a1, . . . , a4 are real and pairwise distinct.

Restricting ourselves to the search of antisymmetric solutions we have to
find only one function in the pants, say p(y) := p+(y) while the remaining
function may be recovered from the mirror antisymmetry:

p−(y) = 1/p+(ȳ). (44)

On the boundary components of the slit sphere this function obeys the rule:

p+(y ± i0)
(33)= χ(D∗)p−(y ∓ i0)

(44)= χ(D∗D1)p+(y ± i0),

y∈ D∗ �=[−1,1]∩[a1, a2].

Therefore

p ∈ R̂, when D∗ = D1;
p ∈ εR̂, when D∗ = D2;

p ∈ ε2
R̂, when D∗ = D3;
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and finally when D∗ = D, the value of p lies on the circle

C := { p ∈ C : |p − μ−1|2 = μ−2 − 1 }, μ :=
√

3 − λ

2λ
(45)

As an immediate consequence of this observation we give a universal
restriction for the spectrum of our integral equation.

Lemma 6 Antisymmetric eigenfunctions correspond to eigenvalues λ ∈ [1, 3].

Proof For the cases A, B1, B22, B23 the slot [−1, 1] \ [a1, a2] is not empty and
the boundary value of p(y) on this slot belongs to the circle C. This circle is
an empty set for μ > 1, or equivalently λ ∈ (0, 1). The proof for the remaining
case B21 requires special machinery and will be given in Section 7. ��

The critical points of two functions p+(y) and p−(y) in the considered
antisymmetric case are complex conjugate as it follows from (44). Taking this
fact into account we reformulate Theorem 2 for the antisymmetric solutions:

Theorem 3 When λ �∈ {0, 1, 3}, the antisymmetric solutions u(x) of integral
equation PS-3 are in one-two correspondence with the meromorphic in the
slit sphere Ĉ \ {[a1, a2] ∪ [a3, a4] ∪ [−1, 1]} functions p(y) that have either none
or one critical point in the domain and the following values on the boundary
components:

y ∈ [−1, 1] \ [a1, a2] (red) [a1, a2] \ [−1, 1] (blue) [a3, a4] (green)

p(y ± i0) ∈ C
ε2R̂ (Case A)
R̂ (Case B)

εR̂

In case B2 the function p(y) has the jump on the remaining part of the
boundary:

p(y + i0) = χ(DD1)p(y − i0), y ∈ [−1, 1] ∩ [a1, a2]. (46)

Remark By ’one-two’ correspondence we mean the following: given any
function p(y) satisfying the conditions of this theorem, it’s easy to check that
its antisymmetrization 1/p(ȳ) also satisfies all the conditions. Therefore, we
have a correspondence of an eigenfunction u(x) to a couple: function p(y) and
its antisymmetrization, only one of them being independent.

4 Statement of the Main Result

From the Section 3.4 it follows that every antisymmetric eigenfunction u(x)

of PS-3 integral equation induces a mapping p(y) of the pants P(R3) to a
multivalent domain spread possibly with branching over the Riemann sphere.
Such surface is known as Kleinian membrane or Überlagerungsfläche and the
complete list of them is given in this section.
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4.1 Tailoring the Pants

We define pants PQ(λ, h1, h2|m1, . . . ) of several fashions Q which parametri-
cally depend on spectral parameter λ, two other reals h1, h2 and one or two
integers m1, . . . . Each boundary oval of our pair of pants covers a circle and
acquires its color in the following way:

C – red,
εR̂ or χ(DD1)εR̂ – green,
R̂ or ε2R̂ – blue.

Any constructed pair of pants may be obtained from the “basic” pants
PQ(λ, h1, h2| . . . ) with lowest possible integer parameters by a surgery pro-
cedure known as “grafting” and introduced independently by B.Maskit,
D.Hejhal and D.Sullivan–W.Thurston in 1969-1983.

4.1.1 Cases A, B1

For real λ ∈ (1, 2) we consider (depending on λ) open annulus α bounded by
two circles: C defined in (45) and εR̂. Another annulus bounded by C and ε2R̂

we denote ᾱ. Note that for the considered values of λ the circle C does not
intersect the lines ε±1R. The m− sheeted unbranched covering of the annuli,
m = 1, 2, . . . , we denote as m · α or m · ᾱ correspondingly.

The annuli we have just introduced may be sewn together in the way
specified in Table 1 to get the pants of four fashions PA1, PA2, PA3, PB1.

Sign ’+’ in the definitions of Table 1 means certain surgery explained below.

Instructions on sewing annular patches together

1. PA1(λ, h1, h2| m1, m2). Take two annuli m1 · α and m2 · α. Cut the top
sheet of each annulus along the same segment (dashed red line in the
Fig. 4) starting at the point h := h1 + ih2 and ending at the circle C. Now
sew the left bank of one cut on the right bank of the other. The emerging
surface is the pair of pants.

Table 1 Three-parametric families of pairs of pants for the cases A, B1; parameter 1 < λ < 2

Fashion of pants Range of h1, h2 and m1, m2 Definition

PA1(λ, h1, h2| m1, m2) h := h1 + ih2 ∈ α ∩ ᾱ, |h| � 1; Cl{(m1 · α) \ [μ−1, h]}+
m1, m2 = 1, 2, . . . Cl{(m2 · ᾱ) \ [μ−1, h]}

PA2(λ, h1, h2| m1, m2) 0 < h1 < h2, h1h2 � 1; Cl{(m1 · α) \ −ε2[h1, h2]}+
m1 = 1, 2, . . . , m2 = 0, 1, 2, . . . Cl{m2 · ᾱ}

PA3(λ, h1, h2| m1, m2) 0 < h1 < h2, h1h2 � 1; Cl{(m2 · ᾱ) \ −ε[h1, h2]}+
m1 = 0, 1, 2, . . . , m2 = 1, 2, 3, . . . Cl{m1 · α}

PB1(λ, h1, h2| m) μ−1 +√
μ−2 − 1 < h1 < h2; Cl{(m · α) \ [h1, h2]}

m = 1, 2, 3, . . .
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C

0

h

+

C

0

h

"red"
"green"
"blue"

Fig. 4 The pair of pants PA1(λ, h1, h2| m1, m2) is sewn down of two annuli

2. PA2(λ, h1, h2| m1, m2). The annulus m1 · α with the segment −ε2[h1, h2]
removed from the top sheet is a pair of pants PA2(λ, h1, h2|m1, 0). Cut the
obtained pair of pants along the segment joining the circle C to the slot
(dashed blue line in the Fig. 5). Also cut top sheet of the annulus m2 · α

along the same segment and sew the left bank of one cut on the right bank
of the other. The arising surface is the pair of pants.

3. PA3(λ, h1, h2| m1, m2). The annulus m2 · ᾱ with the segment −ε[h1, h2]
removed from the top sheet, is a pair of pants PA3(λ, h1, h2|0, m2). As in
the previous passage, we may sew in the annulus m1 · α to the obtained
pants to get the result.

4. PB1(λ, h1, h2| m) is just the annulus m · α with the segment [h1, h2] re-
moved from its top sheet.

The limit case of the pants PA1, when the branch point h1 + ih2 tends to
ε±1R, coincides with the limit cases of pants PA2 or PA3, when h1 = h2 > 0.
The corresponding unstable two-parametric families of pants PA12 and PA13

are defined in Table 2.

C

0

2h2

ε

ε

2h1

+
C

0

"red"
"green"
"blue"

–

–

Fig. 5 The pair of pants PA2(λ, h1, h2| m1, m2) is sewn of simpler pants and the annulus
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Table 2 Unstable two-parametric families of pants

Fashion of pants Definition

PA12(λ, h| m1, m2) PA1(λ,−Re(ε2h),−Im(ε2h)|m1, m2) =
PA2(λ, h, h|m1, m2)

PA13(λ, h| m1, m2) PA1(λ,−Re(εh),−Im(εh)|m1, m2) =
PA3(λ, h, h|m1, m2)

The range of parameters: 1 < λ < 2, h > 0, m1 and m2 = 1, 2, 3, . . .

4.1.2 Case B2

Two circles: εR̂ and χ(DD1)εR̂ do not intersect when λ ∈ (1, 3). They bound
the open annulus β depending on λ. The m− sheeted unbranched covering of
the annulus we denote as m · β, m = 1, 2, 3, . . . The points of the annulus m · β

may be described in the form

p = μ−1 + ρ exp(iφ),

where ρ > 0 and the argument φ ∈ R mod 2πm. The action of χ(DD1) on the
sphere (i.e. consecutive reflections in circles C and R̂) lifts to the involution of
the multi-sheeted annulus m · β in the following way:

� : μ−1 + ρ exp(iφ) → μ−1 + r2

ρ
exp(−iφ) (47)

where r := √
μ−2 − 1 is the radius of the circle C.

Definition We introduce three pairs of pants PB21, PB22 and PB23, each of
them depend on three reals λ, h1, h2 and an integer m:

PB2s(λ, h1, h2| m) := Cl{(m · β) \ (E1
s (h1) ∪ E2

s (h2))}/�, s = 1, 2, 3,

Table 3 Slots for the subcases of B2, parameter 1 < λ < 3

Definition of slots Range of h1, h2

E1
1(h1) := μ−1 + r exp[−h1, h1], h1 � h2 > 0,

E2
1(h2) := μ−1 + r exp[−h2, h2] exp(iπm) when m is even;

(μ−1 + r exp h1)·
(μ−1 − r exp h2) � 1,
when m is odd.

E1
2(h1) := μ−1 + r exp[−ih1, ih1], h1 � h2, when m is even;

E2
2(h2) := μ−1 + r exp[−ih2, ih2] exp(iπm) Arg(exp(ih1) + μr) �

Arg(exp(ih2) − μr)
when m is odd;
h1 + h2 < mπ , h2 > 0,
for any m.

E1
3(h1) := μ−1 + r exp[−h1, h1], h1 > 0, mπ > h2 > 0

E2
3(h2) := μ−1 + r exp[−ih2, ih2] exp(iπm)
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where the slots E1
s , E2

s are defined in Table 3. The slots are invariant with
respect to the involution � and do not intersect each other as well as the
boundary of the annulus m · β.

To understand the interrelation of introduced constructions it is very useful
to imagine how the pants PB1 are transformed to the pants of fashion Q = B23
and the latter—to the pair of pants PB21 or PB22.

4.2 The Main Theorem

Theorem 4 When λ �= 1, 3 the Hölder’s antisymmetric eigenfunctions of PS-
3 integral equation for the case Q = A, B1, B21, B22, B23 are in one to
one correspondence with the pairs of pants2 PQ(λ, h1, h2|m1..) conformally
equivalent to the pants (9) associated to the functional parameter of integral
equation.

Let the function p(y) conformally maps the pair of pants P(R3) to the pants
PQ(λ, h1, h2|m1..) and respects the colours of the boundary ovals, then up to
proportionality

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
(y − y1)(y − y2)

p′(y+)p′(y−)

p(y+) − p(y−)

w(y)
, x ∈ [−1, 1] \ [a1, a2],

√
(y − y1)(y − y2)

Im p(y+)

w(y)|p′(y+)| , x ∈ [−1, 1] ∩ [a1, a2].
(48)

Here y := R3(x), y± := y ± i0. For the fashion Q = A1, y1 = y2 is the inner
critical point of the function p(y); for other fashions Q real y1 and y2 are
boundary critical points of the function p(y).

The proof of the main theorem for the cases A,B1 is given in Section 6 and
for the case B2—in Section 7.

4.3 Corollaries

The representation of eigenfunction (48) cannot be called explicit in the usual
sense, since it comprises a transcendent function p(y). We show that neverthe-
less the representation allows us to understand the following properties of the
solutions.

1. The “antisymmetric” part of the spectrum is always a subset of [1, 3]; for the
equations of types A,B1 this part of the spectrum always lies in [1, 2] ∪ {3}.

2. Every λ ∈ (1, 3) is the eigenvalue for inf initely many equations PS-3.

2For the case A there are three stable and two unstable pants fashions PA∗(. . . )
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Proof Any of the constructed pants may be conformally mapped to the stan-
dard form: the sphere with three real slots. Now we can apply the procedure of
the Section 2.5 and get the functional parameter R3(x) such that the associated
pair of pants is conformally equivalent to the pants we started from.

3. Eigenfunction u(x) related to the pants PQ(. . . |m1, m2) has exactly m1 +
m2 + 1 zeroes on the segment [−1, 1] when Q = A, B1.

Proof According to the formula (48), the number of zeroes of eigenfunction
u(x) is equal to the number of points y ∈ [−1, 1] where p(y+) = p(y−). This
number in turn is equal to the number of solutions of the inclusion

S(y) := Arg[p(y−) − μ−1] − Arg[p(y+) − μ−1] ∈ 2πZ, y ∈ [−1, 1].
(49)

Let the point p(y) goes m times around the circle C when its argument y
travels along the banks of [−1, 1]. Integer m is naturally related to the integer
parameters of pants PQ(. . . ). The function S(y) strictly increases from 0 to
2πm on the segment [−1, 1], therefore the inclusion (49) has exactly m + 1
solutions on the mentioned segment. ��

4. The mechanism for arising the discrete spectrum of the integral equation is
explained. Sewing annuli down to the pants PQ(λ, h1, h2| . . . ) one changes
the conformal structure of the latter. To return to the conformal structure
specified by P(R3) we have to change the real parameters of the pants, one
of them is the spectral parameter λ.

In a sense, the eigenvalue problem (1) is reduced to the solution of three
equations for three unknown numbers. These equations relate moduli of given
pants P(R3) to the moduli of membrane with real parameters λ, h1, h2 and
extra discreet parameters.

5 Auxiliary Constructions

The combinatorial analysis of the arising projective structure p(y) is based on
two constructions we describe below.

Let p(y) be a holomorphic map from a Riemann surface M with a boundary
to the sphere and the selected boundary component (∂M)∗ is mapped to a
circle. The reflection principle allows us to holomorphically continue p(y)

through this selected component to the double of M. Therefore we can talk
of the critical points of p(y) on (∂M)∗. When the argument y passes through
a simple critical point, the value p(y) reverses the direction of its movement
on the circle. So there should be even number of critical points (counted with
multiplicities) on the selected boundary component.
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5.1 Construction 1 (No Boundary Critical Points)

Suppose that p(y) has no critical points on the selected component of ∂M
which is mapped to the boundary of the unitary disc

U := {p ∈ C : |p| � 1}. (50)

We define the mapping from a disjoint union M � U to a sphere:

p̃(y) :=
{

p(y), y ∈ M,

y−d, y ∈ U,
(51)

where integer d �= 0 is the degree of the mapping p : (∂M)∗ → ∂U, d is positive
(negative) if a small annular vicinity of the selected boundary component is
mapped to the interior (exterior) of the unit disc. We also call d the winding
number of p(y) on the boundary oval (∂M)∗

Now we fill in the hole in M by the unit disc, identifying the points of
(∂M)∗ and the points of ∂U with the same value of p̃ (there are |d| ways to
do so). The holomorphic mapping p̃(y) of the new Riemann surface M∪U to
the sphere will have exactly one additional critical point of multiplicity |d| − 1
at the center of the glued disc.

5.2 Construction 2 (Two Boundary Critical Points)

Let again p(y) be a holomorphic mapping of a bounded Riemann surface M
to the sphere with selected boundary component (∂M)∗ being mapped to the
boundary of the unit disc U. Now the mapping p(y) has two simple critical
points on the selected boundary component (the case of coinciding critical
values is not excluded). Those two points (Fig. 6) divide the oval (∂M)∗ into
two segments. We are going to modify the Riemann surface M, sewing down
one segment of (∂M)∗ to the other and filling the remaining hole (if any) with
the patch U.

**

Fig. 6 Mapping of the boundary component (∂M)∗ with two simple critical points ∗ on it and the
degree d = −1
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Again, we define the mapping from the disjoint union M � U to the sphere
by the formula (51) where integer d is the degree of the mapping p : (∂M)∗ →
∂U. In other words, 2πd is the increment of arg p(y) when the point y goes
around the selected boundary oval in the positive direction.

We glue one segment of (∂M)∗ to a part of the other, identifying the points
of the boundary oval equidistant in the metric |dp| from (any) chosen boundary
critical point. If d = 0, the hole disappears. Otherwise we identify the remnant
of (∂M)∗ with the boundary of U, gluing points with the same value of p̃(y) as
shown in the Fig. 7a.

The holomorphic mapping p̃(y) of the modified Riemann surface to the
sphere will have no additional critical points when d = 0. When d �= 0 one
or two additional critical point arise: one of multiplicity |d| − 1 at the center
of the artificially attached disc and a simple critical point the place of the old
boundary critical point other than chosen in the previous paragraph.

Remark The application of Constructions 1 and 2 to a given function p(y)

mapping boundary component of the surface M to the circle contains an
arbitrary element—linear fractional function mapping the given circle to
the standard one, ∂U. Changing this element we can (a) arbitrary move the
additional critical value of p̃ within appropriate disc and (b) change the
sign of d. The choice of the additional critical value will simplify the arising
combinatorial analysis and we always assume w.l.o.g. that d � 0.

6 Proof for the Cases A, B1

6.1 Eigenfunction Gives Pair of Pants

We already know that every antisymmetric eigenfunction of integral equation
PS-3 generates the mapping p(y) from the pants P(R3) to the sphere. The
boundary ovals of the pants are mapped to three circles specified in Theorem
3 and the function p(y) may have either (a) no critical points, (b) one simple
critical point inside the pants, (c) two boundary simple critical points or (d)

Fig. 7 (a) Filling in the hole bounded by (∂M)∗ (b) Splitting of the mapping p(y)
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one double critical point on the boundary. The first two possibilities will be
considered in Section 6.1.1 and the other two—in the Section 6.1.2.

6.1.1 No Critical Points on the Boundary of Pants

Branched Covering of a Sphere Suppose that the point p(y) winds around
the corresponding circle dr, dg and db times when the argument y runs around
the ‘red’,‘green’ and ‘blue’ boundary component of P(R3) respectively. We
can apply the construction of Section 5.1 and glue three discs, Ur, Ug, Ub to
the holes of the pants. Essentially, we have split our mapping p(y)—see the
commutative diagram on the Fig. 7b. The holomorphic mapping p̃ has three
or four ramification points, three of them are in the artificially glued discs and
the fourth (if any) is inherited from the projective structure.

Applying the Riemann–Hurwitz formula we get:

dr + dg + db = 2N, p is branched,

dr + dg + db = 2N + 1, p is unbranched,
N := deg p̃. (52)

Intersection of Circles

Lemma 7 In case A the required projective structure p(y) with a critical point
inside the pants may exist only if the spectral parameter 1 < λ < 2 (i.e. when
the circle C does not intersect two other circles ε±1R̂). The structure without
branching does not exist for any λ.

Proof

1. We know that the point 0 lies in the intersection of two circles: εR̂ and ε2R̂.
The total number �{ p̃−1(0)} of the pre-images of this points (counting the
multiplicities) is N and cannot be less than db + dg—the number of pre-
images on the blue and green boundary oval of the pants. Comparing this
to (52) we get dr � N which is only possible when

dr = dg + db = N. (53)

Assuming that the circle C intersects any of the circles ε±1R̂ we repeat
the above argument for the intersection point and arrive at the conclusion
db = dr + dg = N or dg = dr + db = N incompatible with already estab-
lished (53).

2. For the unbranched structure p(y) the established inequalities db + dg �
N and dr � N contradict the Riemann-Hurwitz formula (52). ��

The above arguments may be applied to the case B1 as well. Taking into
account that the circles C and R̂ always intersect we arrive at
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Lemma 8 In case B1 the mapping p(y) (if any) will have a boundary critical
point.

Image of Pants Let us investigate where the artificially glued discs in case A
are mapped to. Suppose for instance that the disc Ur is mapped to the exterior
of the circle C. The point 0 will be covered then at least dr + dg + db = 2N
times which is impossible. The discs Ug and Ub are mapped to the left of the
lines εR and ε2R respectively, otherwise points from the interior of the circle
C will be covered more that N times. The image of the pair of pants P(R3) is
shown on the Fig. 8.

We use the ambiguity in the construction of gluing the discs to the pants
and require that the critical values of p̃ in the discs Ug, Ub coincide. Now the
branched covering p̃ has only three different branch points shown as •, ◦ and
∗ on the Fig. 8. The branching type at • is the cycle of length N; at the point
◦ there are cycles of lengths dg and db ; and the branch point ∗ is simple. The
coverings with three branch points are called Belyi maps and are described by
certain graphs known as Grothendieck’s “Dessins d’Enfants”. In our case the
dessin is the lifting of the segment connecting white and black branch points:
� := p̃−1[•, ◦].

Combinatorial Analysis of Dessins There is exactly one critical point of p̃
over the branch point ∗. Hence, the compliment to the graph � on the upper
sphere of the diagram on the Fig. 7b contains exactly one cell mapped 2 − 1 to
the lower sphere. All the rest components of the compliment are mapped 1 −
1. Two types of cells are shown in the Fig. 9a and b, the lifting of the red circle
is not shown to simplify the pictures. The branch point ∗ =: h1 + ih2 should
lie in the intersection of two annuli α and α otherwise the discs Ug, Ub glued
to different boundary components of our pants will intersect: the hypothetical
case when the branch point of p(y) belongs to one annulus but does not belong
to the other is shown in the Fig. 9c.

Fig. 8 Shaded area is the
image of pants in case A,
index db �= 0

C

*
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* *

(a) (b) (c)

Fig. 9 (a) Simple cell (N − 2 copies) (b) Double cell (1 copy) (c) Impossible double cell

The cells from the Fig. 9a, b may be assembled in a unique way shown in the
Fig. 10. The pants are colored in white, three artificially sewn discs are shaded.
Essentially this picture shows us how to sew together the patches bounded by
our three circles C, ε±1R̂ to get the pants conformally equivalent to P(R3).
As a result of the surgery procedure we get the pants PA1(λ, h1, h2|dg, db ).
Changing the superscript of the projective structure p±(y) gives us the change
of sign for the eigenfunction u(x) and the reflection of the pants PA1(. . . ) in
the unit circle ∂U. This is why we consider only the pants with |h1 + ih2| � 1.

6.1.2 Boundary Critical Points

First of all we consider the stable case of two simple critical points on the
boundary oval. At the moment we do not know the color of this oval and we
use the ‘nicknames’ {1, 2, 3} for the set of colours {r, g, b} so that the critical
points will be on the oval 3.

Branched Covering of the Sphere The usage of both constructions from
Section 5 allows us to include the pants P(R3) to the sphere attaching two discs
U1 and U2 to the first two ovals, collapsing the boundary of the third oval and

"red"

"green"

"blue"

Fig. 10 Dessin for dg = 3, db = 2; the pre-image of the branch point ∗ is at infinity
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sewing in the third disc U3 if necessary. Nonnegative winding numbers arising
in those constructions we denote as d1, d2, d3 respectively.

We arrive at the branched covering p̃ of the diagram on the Fig. 7b. This
mapping has either two, three or four critical points. Two of them are in the
centers of the discs U1, U2; another one or two points arise only when d3 �= 0—
the center of U3 and one of the boundary critical points of the mapping p(y).
The multiplicities of those critical points are respectively d1 − 1, d2 − 1, d3 − 1,
1. Riemann-Hurwitz formula for this covering reads

d1 + d2 + d3 = 2N, N := deg p̃. (54)

Lemma 9 The images of the ovals 1 and 2 do not intersect.

Proof Suppose the inverse is true and a point Pt lies in the intersection
of images of the first two ovals. Then N � � p̃−1(Pt) � d1 + d2. Any of the
critical points from the third oval has at least d3 + 1 � N pre-images counting
multiplicities. The last two inequalities contradict (54). ��

Corollaries

1. In case A the critical points of p(y) lie either on the blue or on the green
boundary of pants. (Two circles ε±1R̂ intersect)

2. In case B1 the critical points of p(y) lie on the blue boundary of pants. (Two
circles C and R̂ intersect)

3. In both cases the required function may only exist when μ ∈ ( 1
2 , 1), or

equivalently λ ∈ (1, 2). (Otherwise the circles C and ε±1R̂ intersect)
To save space, further proof will be given for the case A only when both
critical points lie on the blue oval. The omitted cases require no extra
technique. Now the notations Ur, Ug, Ub , dr, dg, db have the obvious
meaning.

Image of Pants

Lemma 10 The image p(P(R3)) of the pants is the union α ∪ ᾱ when db �= 0 or
the annulus α when db = 0.

Proof Setting Pt = 0 in the proof of Lemma 9 we establish the equalities

dg + db = dr = N.

Now, repeating the arguments of the same title paragraph of the Section 6.1.1
we conclude that the disc p̃(Ur) fills the interior of C, the disc Ug is mapped to
the left of the line εR and the disc Ub (if any) is mapped to the left of ε2R. So
the sector { 2π

3 � arg p � 4π
3 } is covered dg + db = N times by the artificially

inserted discs. The disc Ug covers the half-plane to the left of the line εR

exactly dg times, the latter number is N when db = 0. ��
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Fig. 11 (a) Simple cell (N − 2
copies) (b) Double cell (1
copy)

(a)

*

(b)

Corollary Both critical values of p(y) lie on the ray −ε2(0, ∞).

Dessin d’Enfants Again, we put the critical values of p̃ in the discs Ug,
Ub to the same point ◦ (see Fig. 8). The only difference from the Section
6.1.1: now the inherited from the pants branch point ∗ (if db �= 0) lies on
the ray −ε2(0, ∞). We introduce the Grothendieck’s Dessin as the lifting of
the segment connecting white and black branch points: � := p̃−1[•, ◦]. The
compliment to � is composed of cells shown in the Fig. 11. In the assembly
the double cell may be used only once and only when db �= 0.

Given the winding numbers dg, db , the cells from the Fig. 11a, b may be
attached to each other in a unique way. When db �= 0 the Dessin � has the
same combinatorial structure as in Fig. 10. Of course, one has to replace the
old cells by those shown in Fig. 11. Shown in the Fig. 12 is the assembly
of cells for db = 0, dg = 5. The pants are colored in white, two artificially
inserted discs are shaded. As a result of the surgery procedure we get the pants
PA2(λ, h1, h2|dg, db ) with positive reals h1, h2 determined by the critical values
of p(y). To discern the pair of pants PA2(. . . ) from its reflection in the unit
circle we consider the restriction h1h2 � 1.

Junction of critical points To study the remaining case when the boundary
critical points of projective structure merge, one has to apply the limit case of

Fig. 12 Degenerate Dessin
for dg = 5, db = 0; the
pre-image of the branch
point ◦ is at infinity

"red"

"green"

"blue"
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the Construction 2. In this way one arrives at the unstable membranes PA12

and PA13. To save space we omit the details.

6.2 Pair of Pants Corresponds to Eigenfunction

Let the pair of pants (9) associated to the functional parameter R3(x) of
the type Q = A,B1 integral equation be conformally equivalent to the pants
PQ(λ, . . . ). This exactly means that there exists a conformal mapping p(y)

from P(R3) to PQ(λ, . . . ) respecting the colors of the boundary ovals. This
mapping is unique since the conformal self-mapping of pants keeping all
boundary ovals invariant is trivial. The mapping p(y) has one simple critical
point inside the pants (for the membrane PA1(. . . )) or two simple boundary
points (for PA2(. . . ), PA3(. . . ), PB1(. . . )) or a double boundary critical point
(for PA12(. . . ), PA13(. . . )). Moreover, p(y) maps the boundary components
of P(R3) to the circles specified by Theorem 3. Hence, given p(y) one can
consecutively restore: two projective structures p±(y), the solution W(y) of
Riemann monodromy problem and the eigenfunction u(x). Combining the
formulae (44), (36) we obtain the top of the reconstruction formulae in (48).

7 Proof for the Case B2

7.1 Eigenfunction Gives Pair of Pants

Any antisymmetric eigenfunction of the integral equation PS-3 generates the
mapping p(y) from the pants P(R3) to the sphere. The principal difference of
this case from the one considered in Section 6 lies in the two-valuedness of
the function p(y) in the pants. To reflect this phenomenon we consider the
two sheeted unbranched cover P2 → P(R3) with trivial monodromy around
the green boundary oval. This new surface is a sphere with four holes, each
boundary inherits the color of the oval it covers—see Fig. 13a. The mapping

*

*

*

*

(a)

**

* *

(b)

Fig. 13 (a) The surface P2 is the double cover of pants P ; (b) P4 is the reflection of P2 in the blue
boundary oval



138 A.B. Bogatyrev

p(y) is lifted to the single-valued mapping p2 : P2 → CP1 satisfying the
equivariance condition:

p2� = χ(DD1)p2, (55)

where � is the cover transformation (change of sheets) of P2, represented as
the rotation by 180◦ around the horizontal axis on Fig. 13a.

Now we can complete the proof of the Lemma 6.
Suppose that there exists the required function p2(y) in the case B21 and

μ > 1. We show that all possible locations of the critical points of this function
lead to the contradiction: (a) p2 has no boundary critical points; (b) all critical
points lie on the green ovals of P2; (c) p2 has at least one critical point on a
blue oval.

(a) We use the Construction 1 and attach four discs to the surface P2. For the
arising ramified covering p̃2 the Riemann-Hurwitz formula reads

2dg + db + d′
b = 2N, p is branched,

2dg + db + d′
b = 2N + 2, p is unbranched,

N := deg p̃2,

where dg is the winding number (degree) of p2(y) on each of the green
ovals; db and d′

b are the winding numbers for two blue ovals of the surface

P2. The point 0 ∈ R̂∩ ˆεR is covered at least dg + db + d′
b � N times. This

agrees the previous formula only if dg � N. But now db = d′
b = 0 which

is impossible.
(b) Now each of two green ovals has two boundary critical points of p2(y). We

use both Constructions and eliminate all holes in P2 attaching two discs
to the blue ovals and possibly two more discs to the green ovals of the
surface. The Riemann-Hurwitz formula for the arising ramified covering
p̃2 reads

2dg + db + d′
b = 2N, N := deg p̃2,

where dg � 0 is the degree of p(y) for each of the green ovals of P2.
Further argument is exactly as in the previous paragraph.

(c) We claim that in this case there are exactly four critical points of p2 on a
blue oval of the surface P2. Indeed, given a critical point Pt, �Pt is also a
critical point because of the equivariance (55). When μ > 1, the mapping
χ(DD1) conserves the orientation of the real axis. This means that those
two critical points are of the same type (say, local maxima of the real
value p2). Hence, Pt and �Pt are separated by the critical points of the
opposite type (local minima in our case). There cannot be more that four
boundary critical points of the function p2 on the double cover of pants
P(R3), so we have listed them all.

Let us consider the double of the surface P2 and cut it along all boundary
ovals of P2, but the blue oval containing all critical point of p2(y). This new
surface, P4, is a sphere with six holes shown in the Fig. 13b, four boundary
ovals are green and two are blue. The reflection principle allows to continue
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analytically p2(y) to the mapping p4(y) of the entire surface P4 to the sphere.
This continuation has four inner critical points and no boundary critical points.
It maps both blue ovals to R̂ and four green ovals to the circles ε±1R̂,
χ(DD1))ε

±1R̂. The usage of Construction 1 allows to fill in all the holes of
P4. The Riemann-Hurwitz formula for the arising ramified covering p̃4 reads

2dg + db = N, N := deg p̃4,

where the numbers dg, db have the obvious meaning. The point 0 is covered at
least 2dg + 2db > N times which is impossible.

The location of the critical points of the mapping p2(y) is given by the
following lemma.

Lemma 11 The mapping p2(y) has exactly two boundary critical points on each
of the non-green ovals of the surface P2.

Proof The mapping χ(DD1) changes the orientation of the circles C and R̂,
when μ ∈ (0, 1). When the point y runs along the blue or red oval of P2, the
value p2(y) changes the orientation of its motion at least twice due to (55). This
means that the argument y comes through at least two boundary critical points.
Since the mapping p(y) has at most two boundary critical points in pants, the
lifted mapping p2(y) has at most four in the double cover of pants. ��

Branched covering of the sphere The mapping p2(y) from P2 to the sphere
has equal winding numbers d = dg on both green ovals. The degree of p2(y) on
each of non-green ovals equals zero. Both statements are simple consequences
of the equivariance condition (55). Applying Constructions 1 and 2 to the
mapping p2 defined on P2, we get a ramified covering p̃2 with two critical
points, both of multiplicity dg − 1.

Image of the Surface The Riemann-Hurwitz formula for the ramified cover-
ing p̃2 reads dg = N := deg p̃2. It is easily seen that two discs attached to the
green ovals of P2 are mapped to the left of the line ε R and to the interior of
the circle χ(DD1) εR̂. Therefore, the surface P2 is conformally equivalent to
the closure of the annulus dg · β with two slots in it.

The involution � of P2 (the interchange of sheets) induces the involution
of the multisheeted annulus. The latter involution is the lifting of χ(DD1) to
dg · β and is given by the formula (47). The slots of dg · β are invariant with
respect to � and therefore pass through the fixed points μ−1 + r and μ−1 +
r exp iπm of the involution. The red slots are projected to the circle C, the
blue slots are projected to the real line. Given in Table 3 inequalities for the
parameters h1, h2 specifying the endpoints of the slots allow us to relate any
given antisymmetric eigenfunction to exactly one picture.

A by-product of the explicit description of the image of the pants is the
following
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Lemma 12 In antisymmetric case B2 two structures p±(y) are dif ferent when
λ �= 3.

Proof Suppose the opposite is true, that is

p(y)p(ȳ) ≡ 1 (56)

for meromorphic function p(y) satisfying the conditions of Theorem 3.
In case B21 the value p(a) ∈R when a ∈ {a1, a2} is the endpoint of the blue

slot. From (56) it immediately follows that p(a) = ±1. But the image of pants
pP(R3) = β avoids both points ±1.

In case B22 the value p(a ± i0) ∈ C = {p = χ(DD1) p̄} when a ∈ {a1, a2} is
the endpoint of the red slot. From (56) and the jump relationship (46) on
[a1, a2] it follows that p(a ± i0) = ±1. Again, the image of pants p(P) avoids
both points ±1.

In case B23 any of the above two arguments is applicable. ��

Corollary In case B2 any eigenvalue corresponds to no more than one anti-
symmetric eigenfunction.

Proof Suppose, there are two linearly independent antisymmetric eigenfunc-
tions of the integral equation (1) with common eigenvalue. They generate two
couples of meromorphic functions in the slit sphere P(R3) \ [−1, 1], say p±,
p±

0 . The analytic continuation of those four functions gives four projective
structures on the riemann surface M with common monodromy determined
by the eigenvalue. From Lemma 12 it follows that no two of the four structures
are identical and therefore (see the second part of the proof of the Theorem 2)
all four values p±(y), p±

0 (y), are different at any point y.
We consider the following differential form on the Riemann surface M:

ω := dp+
(

1

p+ − p+
0

− 1

p+ − p−
0

)
.

This form ω is the infinitesimal form of the cross ratio and it is invariant
under the same linear-fractional transformations of three functions p±

0 , p+.
Therefore ω is well defined on the entire Riemann surface M. Using local
coordinates on M, it’s easy to check that the form is holomorphic and (ω) =
D(p+). Any holomorphic differential on the genus 2 surface has two zeroes
which are interchanged by the hyperelliptic involution of M. According to
Lemma 11, the branching divisor of p1(y) is different as it has a branchpoint
on each of non-green ovals of the pants P . ��

7.2 Pair of Pants Corresponds to Eigenfunction

Let the pair of pants PB2s(λ, h1, h2|m) be conformally equivalent to the pair
of pants P(R3) associated to type B2s, s = 1, 2, 3, integral equation. This
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exactly means that there exists respecting the colors of the boundary ovals
equivariant conformal mapping p2(y) from the double cover P2(R3) of pants
to the closure of the multisheeted annulus m · β with two slots E1

s (h1) and
E2

s (h2) in it. We represent the double cover P2(R3) as two copies of pants
P(R3) cut along the segment [−1, 1] ∩ [a1, a2] and attached one to the other.
The restriction of p2(y) to one of such copies gives the function p(y) satisfying
all the assumptions of the Theorem 3. The antisymmetric eigenfunction of the
integral equation now may be reconstructed via the known procedure which
gives the formulae (48). Moreover, from Lemma 12 we have learned that
the invariant J0 �= 0 for antisymmetric solutions in the case B2. So we can
use the alternative formula (41) to reconstruct the eigenfunction u(x) when
x ∈ [−1, 1] \ [a1, a2]. On the remaining part of the segment [−1, 1] we can use
along with (48) the other formula:

u(x)= Im p(y+)

|p(y+)−μ|2+1−μ2
, y+ := R3(x + i0), x ∈ [−1, 1] ∩ [a1, a2].

The only nuisance here consists in possible non-uniqueness of the mapping
p(y). Indeed, when two of the boundary ovals of pants have the same color
(blue in case B21 or red in case B22), the pants may admit conformal involution
interchanging the ovals of the same color. Such pants fill in a codimension
one manifold in the corresponding moduli space. The Corollary to Lemma
12 nevertheless guarantees the uniqueness of the antisymmetric eigenfunction
for the given membrane PB2s: the composition of p(y) with the conformal
automorphism of pants coincides with either p(y) or its antsymmetrization
1/p(ȳ).

8 Conclusion

The geometric and combinatorial analysis of the spectral problem for the
Poincare-Steklov integral equation is given in this paper. Another powerful
approach to the study of integral equations is the theory of operators. It is
always useful to compare two different viewpoints on the same subject.

The study of the spectral problem (1) based on the theory of singular
integral operators was carried out in [1, 2]. The following results were obtained
for general smooth coordinate changes R(x) provided the non-degeneracy
condition (2) holds: (i) The spectrum is discrete; the eigenvalues are positive
and converge to λ = 1; (ii)

∑
λ∈Sp |λ − 1|2 < ∞ (a constructive estimate in

terms of R(x) may be given); (iii) The eigenfunctions u(x) make up an
orthogonal (with respect to a special scalar product) basis in the Sobolev space
H1/2

oo (I).
The geometric approach was first applied to the PS − 2 integral equations

with R(x) = x + (2C)−1(x2 − 1), the parameter C > 1. The complete set of
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eigen-values and functions from the above Sobolev space has been explicitly
found [3]:

un(x) = sin

⎡
⎣nπ

K′

(C+x)/(C−1)∫

1

(s2 − 1)−1/2(1 − k2s2)−1/2ds

⎤
⎦ , (57)

λn = 1 + 1/ cosh 2πτn, n = 1, 2 . . . ,

where τ = K/K′ is the ratio of the complete elliptic integrals of modulus
k = (C − 1)/(C + 1). All Poincare-Steklov equations with the eigenfunctions
expressed in terms of elliptic functions were listed in [10]. The next natural
step was to study equations (1) with a rational degree 3 functions R(x) [11].
In this paper we show that all the eigenfunctions of PS-3 equations are split
into two classes (symmetric/antisymmetric) with respect to the symmetries of
the underlying geometric structures and we give the representation for all
antisymmetric eigenfunctions (further analysis shows that this class is larger
than the remaining one). The representation is given by an explicit formula
(48) which contains a transcendental function p(y) conformally mapping some
explicitly constructed pair of pants to the standard form. Of course, this answer
is less explicit than e.g. formula (57). The immediate consequences of this
formula listed in Section 4.3 include: the exact locus of the spectrum for the
family of equations, the oscillatory behaviour of the higher eigenfunctions; the
mechanism for the emergence of the separate eigenvalues. Further study of
the eigenvalues and eigenfunctions is now reduced to the problems of geomet-
ric function theory. Say, the explicit asymptotical formulae for the solutions
may be written in the case when the conformal mapping of the pants to the
standard three-slit domain is known approximately (short slots, small holes
etc.).

It seems that the results of the mentioned two approaches are complemen-
tary. Operator theory may be applied in a rather general situation and it gives
rather general answers. The usage of geometrical analysis is more restricted
(e.g. may be applied to rational parameters R(x)) and more difficult. But if
we are lucky, this analysis may give us the best of the answers—the explicit
formulae for the solutions. The author hopes that some of the techniques used
in this paper may be helpful for the study of other integral equations with
rational low degree kernels.
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