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ABSTRACT - If a matrix has a small rank then it can be multiplied by a vector
with many savings in memory and arithmetic. As was recently shown by
the author, the same applies to the matrices which might be of full classical
rank but have a small mosaic rank. The mosaic-skeleton approximations seem
to have imposing applications to the solution of large dense unstructured
linear systems. In this paper, we propose a suitable modification of Brandt’s
definition of an asymptotically smooth function f(z,y). Then we consider
n X n matrices A, = [f(xfn),y(n))] for quasiuniform meshes {xin)} and {y](n)}
in some bounded domain in the m-dimensional space. For such matrices, we
prove that the approximate mosaic ranks grow logarithmically in n. From
practical point of view, the results obtained lead immediately to O (nlogn)

matrix-vector multiplication algorithms.
1. Introduction

Mosaic-skeleton approximations arise quite naturally in many applications.
Probably they were mentioned first in [10]. Later they were successfully used in
the context of the boundary element method, though rather implicitly [4, 6, 7].

From the matrix analysis standpoint, a concept of mosaic ranks of a matrix
is the one that is behind them. This concept was introduced by the author in
[9].

In this paper, we describe a wide class of applications that give rise to
matrices with low mosaic ranks. In particular, we propose a modification of
Brandt’s definition of an asymptotically smooth function f(z,y). It is less
restrictive than the one we considered previously [9]. In a certain sense,
it seems unlikely to get any further extension. For n x n matrices A, =
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(n) (") : o (n) (m)y -
[f(x;",y;")], when using quasiuniform meshes {z;"’} and {y;"} in the bounded
m-dimensional domain we prove that the approximate mosaic ranks might grow

only logarithmically in n.

2. There is a skeleton ...

T

First of all, we need to recall the definitions. A matrix of the form wuv’,

where u and v are column vectors, is called a skeleton. If A is a sum of r
linearly independent skeletons then the (classical) rank of A is equal to r. Using
the skeleton expansion A = Y., w;v] we can calculate y = Az in only 2rn
coupled operations (instead of n?) using only 2rn memory locations (instead of
n?).

In the general case, when A is m x n, the compressed memory is defined
by the formula

MEMORY = RANK - (m + n).

For arbitrary matrices (prospectively nonsingular), the mosaic rank is introduced
so that the formula

MEMORY = MOSAIC RANK - (m + n)

be still valid.

If B is a submatrix for a m x n matrix A then I'(B) denotes the m x n
matrix with the same block B and zeroes elsewhere. A system of blocks A; is
called a covering of A if

A= Z I'(Ai),

and a mosaic partitioning of A if the blocks have no common elements.
For any given covering, there might be far too few skeletons in every block
(the fewer the better). The mosaic rank of A is defined as

(2.1) mrA:ZmemAi / (m+n),

where
(2.2) mem A; = min {m;n; , rank A;(m; + n;)}.

The notion of the mosaic e-rank is defined as the minimal mosaic rank
over all e-perturbations of A (usually in the 2-norm).

The use of mosaic ranks can be illuminated by the following example [9].
Let A, be n x n with units on and below the main diagonal and zeroes in the
upper triangular part. Then

rankA,, =n whereas mrA, <log, 2n.
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Further, to cover many important applications we consider a sequence of
matrices

Au = [y e,

of which the entries are the values of a function f(z,y),
reXCIR™ yeY CR",

at the nodes
xgn),...,ng) e X, y§n),...,y(”) ey

n

Under rather general assumptions such matrices appear to be close to matrices
of low mosaic rank.

Following Brandt [1], we call a function f(x,y) asymptotically smooth if
there exists ¢ such that, for any p,

(2.3) |0°f(z,y)] < eplw =yl

where 07 is any p-order derivative in y (here and further on, |z —y| = [|a —y]|2).
To be safe from infinite values, we set f(x,y) =0 when a = y.

However, we will demand a bit more of an asymptotically smooth function.
In [9] we required that

(2.4) ¢, < cpp! for some a >0, ¢>0.

Then we considered uniform meshes
(n) :yl(n) = gi, r=1,...,n.
n
and claimed that for any e > 0 matrices A, can be approximated by some A,
such that

(2.5) mr A, = O(lognloge™?)
and
(2.6) ||A, — A, ||lF = O(ne).

That claim just shows what kind of results could be expected. The assertion
itself wasn’t meant to be any final, and probably it needs, all through, some
correction to be valid precisely for all functions in question. Some applications
were presented in [3]. After those preliminary results, we want now to analyze
more thoroughly the premises and estimates like those of the above claim.

Here, we have some progress along the following lines: first, we relax a
good deal the requirements on asymptotically smooth functions, and second, we
allow the meshes to be nonuniform.
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3. The basic lemma

To complete the background, we formulate the basic algebraic lemma we
fall back on constantly in the derivations (for the proof, see [9]).

LEMMA 3.1. Given a matrix A € €"*" of the form

All Al?
A — \ A E @ml ><7”L17 A E @mg)(ng‘
[An Azz] 11 22

assume that

(3.1) [(m1+n1) = (m2+m2)| < glm+n), ¢ < 1,

and there exist mosaic partitionings such that

(3.2) mrA; < clogé"’l(mi +n;), 1 =1,2; mrA; < rlogg(mi +nj), ¢ # J,
for some k£ > 0, and, moreover,

c> —s—.
= )
log; =17

Then for A, there exists a mosaic partitioning such that
(3.3) mrA < clogé"’l(m +n).
4. Asymptotically smooth functions

The definition cited in Section 2 is not very satisfactory. It was okay for
such an important function as f(x,y) =1 / | —y| we worked with in [3, 9]
when x,y € IR. Still, it leaves this function out of the batch when x,y € IR™
for m > 2. We are thus bound to consider a more general definition.

DEFINITION 4.1. A function f(x,y) is called asymptotically smooth if there
exist ¢,d > 0 and a real number ¢ such that

(4.1) |0 f(z,y)| < cd plle—yl™",

where 97 is any p-order derivative in .

PROPOSITION 4.1. For any m, the function
1 m
fley)=—, r=le—yl, @yeR",

is asymptotically smooth. In particular,

47 pl
S

1
. P_| <
(12) [o~] <

for all p-order partial derivatives in y.
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Since accurate estimation of derivatives is a subtle matter, to make it easier
we propose an overestimation technique.
Let 6; = #; — y; and take up a product

3
oF = 11 6.
=1
Any time we write 6% it might include different indices ¢y, ... ,i;. Even in this

uncertainty, we have always

6% < #F and 06| < koL

It f is an algebraic sum of the form

Sk

f:ZOélﬁ

then, obviously,

||

< T =2 s

Now, if ¢ and 1 are two algebraic sums of (different) items of the form aé* / r"

then let us introduce a partial ordering as follows:

0 < v = D) < @) Vo

A useful observation we want to rely on consists in the following:

gk 6t

P = rnti

V> 0.

PROOF OF THE PROPOSITION. It is not difficult to see that

1 )
o= —
r = r3
and
1 1 6? 1 6?
2

We now conjecture that

1 &P
- < ¢, ——

r P opopt1?
where

p—1

Cp = H(l +3k)7

k=0
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and prove this by induction. It is sufficient to differentiate

P
6(5—) < ! a&u&pal

r2p—|—1 r2p—|—1 r2p—|—1

§p1 5 2p+ 1 i
p r2p—|—1 r2p T3
§pt1

~

and note that ¢,41 = (14 3p)c,. We complete the proof by passing to a rougher
estimate ¢, < p! 4%, |

REMARK 4.1. As is clear from the above proof, we can provide in fact a neater
estimate: for any ¢ > 0,

e, < cft)p! 37
It follows from the evident identity
¢ L 1/3)
— =3F 1+——].
p! kl;[l ( k

Using a well-known fact from the gamma-function theory:

kli(l + %) = F(lpiix) +O0(p* ™),

we rewrite that identity as

1
3

2w (i ouh).

5. Why small mosaic ranks?

Denote by C(a) a cube in IR™ with the side length «, and define its
far-away zone as

CHa)y={z: |z —y|>a VY yeCla)l

Take any 0 < ¢ < 1 and, for a while, do not change it.

LEMMA 5.1. Suppose f(x,y) is an asymptotically smooth function with param-
eters d,g. Then given any nodes such that

Y1,y € Cla), T, .. x, € CY(a),
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for any positive integer p the matrix M = [f(xi,y;)]kxs can be split as
M=T+R,
where

rank T < ¢e(d,m,q)p™,
1Bllr < VElq"a’.

Proor. Using the Taylor expansion of f(x,y) in y at some point yo € C(a),
we may write

f(:]c,y) =T, + Ry,
where
k
=l ((y — yo)'V
T,= ( X ) f(:lf,y)|y:y0-

k=0

It is easy to see that T, is a sum of O(p™) functional skeletons, i.e., functions of
the form ¢(a)y(y). It follows that the rank of any matrix of the form [T,(x;, ;)]
is O(p™).

For the Taylor remainder term, we obtain
|y - y0|p a?

R <mPed
| p| —
aP

Y

where mP is an upper bound for the number of summands in the expansion
of (a1 4+ ...+ an)?, and ¢, d, g are taken from the definition of asymptotical
smoothness. Now let us subdivide the cube C(a) into s™ equal subcubes
C1y...,Cgn with the side length 2. If y belongs to any such cube and yo is its
center, then for some d; > md

o )? .
IR,| < dszagﬁ (dl ﬁ) a.

aP

25

Picking up s to be the smallest possible positive integer providing us with
dlx/m
5, =
s

we arrive at |R,| < ¢Paf.

We now reorder the nodes y; to make of them a sequence of s™ clusters
(maybe less, for some might be empty) coupled with every subcube, and let

M = [Ml,. .. 7]\45771]7 Mk = [Tp(l’i,y]‘)], Y; € Ck,
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R = [Rl,. . .,Rsm], Rk = [Rp(l’i,y]‘)], Y; € Ck,

The estimates on the rank of M and Frobenius norm of R follow immediately.
|

DEFINITION 5.1.  Consider a mesh {:L'En) ©_, and let y(n,C(a)) count the number
of the nodes belonging to C'(a). We call a sequence of meshes quasiuniform on
C'(a) if there are positive constants 71,72 such that

bm ™

T—n < w(n,C (b)) < max{m b—mn, 1} vC(b) cCCla), Vn.
a

a

Throughout below we consider only those cubes of which the edges are

parallel to the coordinate axes.

LEMMA 5.2. Assume that Ci(a) and Cy(a) are any cubes in IR™ with no common
interior points, and let A, = [f(xﬁ”),yﬁn))]nxn, where f is an asymptotically
smooth function with parameters d, ¢, and the sequences of meshes {:z:fn)} and
{y](n)} are quasiuniform on Ci(a) and Cy(a), respectively. Then for any positive

integer p and for all n there exist splittings
A, =T, + R,

with
mr T, = O0p"), ||l = O(n" ¢" )

for some v > 0. In case m+1+2g > 0 the latter holds with v = 1.

PrROOF. Subdivide every cube into s™ subcubes with the side length £. We’d
like to proceed by induction, and here the choice of s is where we should be
very careful (for instance, if s =2 then it makes no good for the proof).

Consider the most close faces of Ci(a) and Cy(a) and the subcubes adjoint
to them. As is readily seen, the number of pairs of which one subcube is not
in the far-away zone of the other one is upper bounded by 3™ s™~1,

We now reorder the nodes to have sequences of clusters coupled with the
subcubes. Once this is done, we recognize in A, a block structure with s™ x s™
blocks. Due to Lemma 5.1, each block save for at most 3™ s™~! among them
can be split into T'4+ R where rank T = O(p™) while [|R||r = O(Z% ¢° (%£)?).

We now reduce the construction of a proper mosaic partitioning to the
same problem only for the most close subcubes. The number of corresponding
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blocks does not exceed 3™ s™~!. Hence, we have the recursive relationship for
the memory as follows:
n

mem (n) < O(np™) + 3mgml mem(s—m).

To make it work we need to choose s so that % < 1.

That is still only half the matter. Another half goes with the estimation
of norms. When applying Lemma 5.1 recursively, we have to replace a by Z%¢
at the kth step, which finally leads to the estimate

O(logn m o om— k
2 / P g\2 ( g) 3 5 ! —2g /
Rl < ¢ (ngPa®)* Y | —F5—s , >0

2m
k=0 =

It m+1+4+2¢g > 0, then we choose s to be the smallest possible one subject to
3m m—1
(7) <1
82m

We are now in a position to set off the main theorems.

THEOREM 5.1. Given any asymptotically smooth function f(z,y) and quasiu-
niform sequences of meshes {:z:fn)} and {y](n)} on a cube in IR™, for any ¢ > 0

and for all n the matrices A, = [f(:z;(n) y(n))]nxn can be split as

i 0y

An = Tn + R?’H
where

mr 7T, = O(logn log™e™),

1Bl = O(n" ¢)
for some v > 0. In case m +2¢g > 0 the latter holds with v = 1.

ProoF. Given a cube C(a), we subdivide it into s™ equal subcubes with the
side length £ and then permute the nodes to make out a sequence of clusters
attached to every subcube. The matrix A, turns to be a block matrix with
s™ x s™ blocks. With s = 2 we can easily come to the estimate on mosaic
ranks by induction, that’s where Lemma 3.1 features in. Here, we also use
Lemma 5.2 for p =loge™" to be chosen.

Inductive estimation of norms might require to increase s. We reduce the
problem to the same one but only for those blocks that correspond to most
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close subcubes. Altogether, there are no more than 3™ s™ blocks like those.

Consequently,
O(ogn)  am m ke
||Rn||12p < (7”ﬂqpag)2 Z <52mw 5_257) ., d>0.
k=0

In case m+2¢g > 0, this entails m+1+2¢ > 0, and hence, from Lemma 5.2,
~ = 1. In this case, for some s the denominator of the progression gets less

than 1. Still wishing to apply Lemma 3.1, we may take s equal to a power of
2. |

THEOREM 5.2. Under the provisions of Theorem 5.1, for any 6 > 0 there are
splittings such that

1
mr7, = O(logm+1 n), || R.||F = O(

)
To prove this, we've recourse to Theorem 5.1 and then choose

1

nét+v’

1I'd like to thank Nickolai Zamarashkin for useful remarks.
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