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Abstract

A general proposal is presented for fast algorithms for multilevel structured ma-
trices. It is based on investigation of their tensor properties and develops the idea
recently introduced by J. Kamm and J. G. Nagy in the block Toeplitz case. We
show that tensor properties of multilevel Toeplitz matrices are related to separa-
tion of variables in the corresponding symbol, present analytical tools to study the
latter, expose truncation algorithms preserving the structure, and report on some
numerical results confirming advantages of the proposal.

AMS classification: 15A12; 65F10; 65F15

Key words: Kronecker product; Low-rank matrices; Multilevel matrices; Toeplitz
matrices; Separation of variables; Asymptotically smooth functions.

1 Introduction

Despite a remarkable progress in fast algorithms for structured matrices in the
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structured matrices.

Multilevel matrices frequently arise in multidimensional applications, where
sizes of matrices may be very large and fast algorithms become crucial. How-
ever, most of the well-known fast algorithms for structured matrices are de-
signed for one-level structured matrices, where request for large sizes is cer-
tainly weaker. Unfortunately, the one-level algorithms are not easy to adapt to
the multilevel case. This applies, for example, to the multilevel Toeplitz matri-
ces: fast algorithms are well developed for the Toeplitz matrices but very thin
on the ground for the two-level (multilevel) Toeplitz matrices. This is likely
to reflect the fact that the fabulous Gohberg-Sementsul and related formulas
[7,11,13,25,6] for the inverse matrices are obtained only in the one-level case.

The main purpose of this paper is investigation of interrelations between the
multilevel structured matrices and tensor-product constructions with accent
on the two-level matrices. Specifically, the goal is to design iterative algorithms
that find the inverse of a multilevel matrix using the following ideas. First, we
believe that structure in the inverse matrices in the multilevel case may appear
through approximation by appropriately chosen matrices of “simpler” struc-
ture. In this regard, tensor-product constructions can be attractive because of
the very simple inversion formula

(A1 ⊗ · · · ⊗ Ap)−1 = (A1)−1 ⊗ · · · ⊗ (Ap)−1.

Generally, inverses of multilevel matrices of low tensor rank may have an in-
verse that is close to a multilevel matrix of low tensor rank. Therefore in each
iteration it makes sense to find a low tensor rank approximant. In the two-
level case the latter low tensor rank approximants may be found by classical
methods, e.g, SVD (in the more special Toeplitz case we can make function
theoretic justifications). Finally, in the two-level Toeplitz case numerical re-
sults indicate that the approach is indeed promising.

Note that new ways for approximation of multilevel structured matrices are
really in need for construction of preconditioners providing superlinear con-
vergence of iterative methods. It was shown first in [21] that this can not
be achieved when using any circulant-like preconditioner. Moreover, such a
preconditioner cannot belong to standard matrix algebras [22]. More negative
results in this line were recently obtained in [15]. All these results indicate
that construction of efficient preconditioners could involve some sets of ap-
proximants other than matrix algebras, and our paper can be considered as a
proposal of one alternative technique.

In Section 2 we recollect the framework for study of structures in multilevel
matrices. Developing the ideas from [29], we introduce the notions of a struc-
tured class and tensor product of structured classes. The latter operation is
used for construction of structured classes in multilevel matrices.
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In Section 3 we study approximations of two-level matrices by sums of tensor
products with the same structures of the factors. We discover here a some-
what surprising result that optimal Frobenius-norm approximations of low
tensor rank for two-level matrices with certain structure on both levels always
preserve the same one-level structures in the Kronecker factors (Theorem 3.2).

In Section 4 we show that the existence problem of tensor-product approxi-
mations for multilevel Toeplitz matrices reduces to approximate separation of
variables in the corresponding generating function (symbol).

In Section 5 we present useful analytical tools to study the latter separation of
variables. A general result is presented here for asymptotically smooth symbols
(Theorem 5.2).

In Section 6 we present truncation algorithms for approximation of the in-
verse matrices, making a step towards better understanding of structure in
the inverses to multilevel matrices.

In Section 7 we demonstrate some numerical results. We discover experimen-
tally that the inverses to doubly Toeplitz matrices for various typical sym-
bols possess low-tensor-rank approximations with the Kronecker factors of
low displacement rank. In fact, we see from experiments that the so-called
ε-displacement rank introduced in [2] is reasonably small for the Kronecker
factors. From theoretical point of view, we are having thus a request for a
rigorous formulation and proof. From algorithmical point of view, it suggests
that we may look for different (and hopefully faster) truncation techniques in
which this observation is adopted explicitly.

2 Structures in multilevel matrices

A general notion of multilevel matrix was introduced in [29]. Let A be a matrix
of size M × N with

M =
p∏

k=1

mk, N =
p∏

k=1

nk.

Then, set
m = (m1, . . . , mp), n = (n1, . . . , np)

and introduce the index bijections

i ↔ i(m) = (i1(m), . . . , ip(m)), j ↔ j(n) = (j1(n), . . . , jp(n))

by the following rules:

i =
p∑

k=1

ik

p∏
l=k+1

ml, j =
p∑

k=1

jk

p∏
l=k+1

nl,
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0 ≤ i ≤ M − 1, 0 ≤ ik ≤ mk − 1, k = 1, . . . , p,

0 ≤ j ≤ N − 1, 0 ≤ jk ≤ nk − 1, k = 1, . . . , p.

Any entry aij of A can be pointed to by the index pair (i(m), j(n)) revealing
a certain hierarchical block structure in A. We will say that A is a p-level
matrix and write

aij = a(i, j) or aij = aij,

freely replacing i by i and j by j. Introduce the truncated indices

ik = (i1, . . . , ik), jk = (j1, . . . , jk).

Then a(ik, jk) will denote a block of level k. We will call m and n the size-
vectors of A.

By definition, A itself is a single block of level 0. It consists of m1 × n1 blocks
a(i1, j1), these blocks being said to belong to the 1st level of A. At the same
time, A consists of (m1m2) × (n1n2) blocks a(i2, j2) of the 2nd level of A,
and so on. It is important to note that each block of level k < p consists of
mk+1 × nk+1 blocks of level k + 1. Further on we chiefly assume that M = N
and m = n.

Multilevel block partitionings are of interest only if the blocks of the levels
exhibit some structure. For example, A is a p-level Toeplitz matrix if every
block of level 0 ≤ k < p is a block Toeplitz matrix with the blocks of the next
level. An equivalent definition is to say that a(i, j) depends actually only on
i − j. Thus, in the case of a p-level Toeplitz matrix we may write

A = [a(i − j)].

A p-level matrix C is called a p-level circulant if every block of level 0 ≤ k < p
is a block circulant matrix with the blocks of level k + 1. Equivalently, a(i, j)
depends only on

(i − j)(modn) ≡ ((i1 − j1)(mod n1), . . . , (ip − jp)(mod np)),

and one may write

C = [c((i − j)(modn))].
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Below we illustrate the structure of A and C in the case p = 2 and n = (3, 2):

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(0, 0) a(0,−1)

a(0, 1) a(0, 0)

a(−1, 0) a(−1,−1)

a(−1, 1) a(−1, 0)

a(−2, 0) a(−2,−1)

a(−2, 1) a(−2, 0)

a(1, 0) a(1,−1)

a(1, 1) a(1, 0)

a(0, 0) a(0,−1)

a(0, 1) a(0, 0)

a(−1, 0) a(−1,−1)

a(−1, 1) a(−1, 0)

a(2, 0) a(2,−1)

a(2, 1) a(2, 0)

a(1, 0) a(1,−1)

a(1, 1) a(1, 0)

a(0, 0) a(0,−1)

a(0, 1) a(0, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(0, 0) c(0, 1)

c(0, 1) c(0, 0)

c(2, 0) c(2, 1)

c(2, 1) c(2, 0)

c(1, 0) c(1, 1)

c(1, 1) c(1, 0)

c(1, 0) c(1, 1)

c(1, 1) c(1, 0)

c(0, 0) c(0, 1)

c(0, 1) c(0, 0)

c(2, 0) c(2, 1)

c(2, 1) c(2, 0)

c(2, 0) c(2, 1)

c(2, 1) c(2, 0)

c(1, 0) c(1, 1)

c(1, 1) c(1, 0)

c(0, 0) c(0, 1)

c(0, 1) c(0, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A general description of structure in multilevel matrices can be introduced in
the following way [30]. Denote by S a sequence of linear subspaces S1,S2, . . .
with Sn being a subspace in the space of all n×n matrices. Obviously, Sn can
be considered as a class of structured matrices of order n, and, if structures
for individual n are worthy to consider as “traces” of a common structure,
then S is a reference to this common structure. Let us write A ∈ S if there
exists n such that A ∈ Sn, and refer to S as a structured class. To distinguish
between different structured classes, we use different letters or lower indices
(i.e., Sα and Sβ).

It is easy to see that Toeplitz or circulant matrices can be described exactly
in this way. Moreover, diagonal, three-diagonal, banded matrices as well as
matrices with a prescribed pattern of sparsity are all examples of the same
description style.

Denote by Sn
α ⊗ Sm

β a subspace in the space of all two-level matrices with
size-vector (n,m), defined by the claim that

A = [a(i1,i2)(j1,j2)] ∈ Sn
α ⊗ Sm

β

if and only if

A2
i2j2

≡ [a(i1,i2)(j1,j2)]
n−1
i1j1=0 ∈ Sn

α ∀ 0 ≤ i2, j2 ≤ m − 1,

and
A1

i1j1
≡ [a(i1,i2)(j1,j2)]

m−1
i2j2=0 ∈ Sm

β ∀ 0 ≤ i1, j1 ≤ n − 1.
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By Sα⊗Sβ we mean a sequence Sn
α⊗Sm

β with the two indices n,m = 1, 2, . . . .
We call Sα ⊗ Sβ the tensor product of structured classes Sα and Sβ.

A natural generalization of the above-considered construction comes with the
assumption that Sα is a sequence of subspaces Sn

α of multilevel matrices with
size-vector n. Then, Sα⊗Sβ means a sequence of subspaces Sn

α⊗Sm
β of multi-

level matrices with size-vector (n,m). The definition for Sn
α ⊗ Sm

β mimics the
above definition with minor changes in the following way:

A = [a(i1i2)(j1,j2)] ∈ Sn
α ⊗ Sm

β

if and only if
A2

i2j2
≡ [a(i1,i2)(j1,j2)]i1,j1∈In ∈ Sn

α ∀ i2, j2,

A1
i1j1

≡ [a(i1,i2)(j1,j2)]i2,j2∈Im ∈ Sm
β ∀ i1, j1.

Thus, having defined some classes of structured matrices Sα1 , . . . , Sαp we can
easily introduce a new class

Sγ = Sα1 ⊗ · · · ⊗ Sαp

of mutlilevel structured matrices. The number of levels for Sγ is the sum of
the numbers of levels for the classes involved. In line with these definitions,
if T stands for the Toeplitz matrices then T ⊗ T means two-level Toeplitz
matrices and, in the general case,

Tp = T ⊗ . . . ⊗ T (T is repeated p times)

means p-level Toeplitz matrices. Similarly, if C stands for circulants then Cp

denotes p-level circulant matrices.

Also, we can easily describe a mixture of Toeplitz and circulant structures
on different levels: for example, T⊗C identifies block Toeplitz matrices with
circulant blocks while C⊗T designates block circulant matrices with Toeplitz
blocks.

Another approach to construction of multilevel structured matrices exploits
the notion of Kronecker (tensor) product. Consider matrices

Ak = [ak
ikjk

], 0 ≤ ik, jk ≤ nk − 1, k = 1, . . . , p,

and define A = [aij] as a p-level matrix of size-vector n = (n1, . . . , np) with
the entries

aij = a1
i1j1

a2
i2j2

. . . ap
ipjp

, i = (i1, . . . , ip), j = (j1, . . . , jp).

This matrix A is called the Kronecker (tensor) product of matrices A1, . . . , Ap

and denoted by
A = A1 ⊗ · · · ⊗ Ap.
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Proposition. If Ak ∈ Sαk
, k = 1, . . . , p, then

A1 ⊗ · · · ⊗ Ap ∈ Sα1 ⊗ · · · ⊗ Sαp .

3 Optimal Kronecker approximations

Suppose that A is a two-level matrix of size-vector n = (n1, n2) and try to
approximate it by a sum of Kronecker products of the form

Ar =
r∑

k=1

A1
k ⊗ A2

k,

where the sizes of A1
k and A2

k are n1 × n1 and n2 × n2, respectively. If A = Ar

and r is the least possible number of the Kronecker-product terms whose sum
is A then r is called the tensor rank of A.

Optimal approximations minimizing ||A−Ar||F can be obtained via the SVD
algorithm due to the following observation [31]. Denote by

Vn(A) = [b(i1,j1)(i2,j2)]

a two-level matrix with size-vectors (n1, n1) and (n2, n2) defined by the rule

b(i1,j1)(i2,j2) = a(i1,i2)(j1,j2).

Then, as is readily seen, the tensor rank of A is equal to the rank of Vn(A).
Moreover,

||A − Ar||F = ||Vn(A) − Vn(Ar)||F ,

which reduces the problem of optimal tensor approximation to the problem of
optimal lower-rank approximation.

In practice we are interested only in the cases when r � n1, n2, so low-rank
approximations being exactly what we need to find for Vn(A) and then con-
vert to low-tensor-rank approximations for A via V−1

n . Computational vehicles
can be the SVD or Lanzos bidiagonalization algorithm. The latter should be
preferred if Vn(A) admits a fast matrix-by-vector multiplication procedure.
However, a drawback of both vehicles in this direct approach is that Vn(A)
does not have smaller sizes than A.

We propose an alternative approach that allows us to work with quite small
matrices while explicitly preserving structure in the Kronecker factors. To
introduce it, recall and adapt the proposal of [14] in the case A ∈ T ⊗ T. In
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this case Vn(A) = [a(i1−j1)(i2−j2)] has coinciding elements whenever i1 − j1 = µ
and i2 − j2 = ν, 1 − n1 ≤ µ ≤ n1 − 1, 1 − n2 ≤ ν ≤ n2 − 1. It suggests
to consider only independent free-parameter elements and take up a smaller
matrix

W (A) = [aµν ], 1 − n1 ≤ µ ≤ n1 − 1, 1 − n2 ≤ ν ≤ n2 − 1. (1)

Let us find a low-rank approximation

W (A) ≈ W (Ar) ≡
r∑

k=1

uk(vk)�,

uk = [uk
µ], 1 − n1 ≤ µ ≤ n1 − 1, vk = [vk

ν ], 1 − n2 ≤ ν ≤ n2 − 1,

then set

Uk = [uk
i1−j1

], 0 ≤ i1, j1 ≤ n1 − 1,

V k = [vk
i2−j2

], 0 ≤ i2, j2 ≤ n2 − 1,

and consider the tensor approximation

A ≈ Ar =
r∑

k=1

Uk ⊗ V k. (2)

This approximation remains optimal in the subspace of interest and in appro-
priately chosen norm. If A ∈ T ⊗ T then set

||A||T⊗T ≡ ||W (A)||F ,

where W (A) is defined by (1). It is easy to see that Ar in (2) belongs to T⊗T
and

||A − Ar||T⊗T = ||W (A) − W (Ar)||F .

We can develop the above into quite a general construction. According to the
definition (see Section 1), Sn is a linear subspace in the space of all matrices
of order n. Hence, any matrix P ∈ Sn can be uniquely defined by some free
parameters (which can be chosen, of course, as some entries of P ). The number
of free parameters is equal to dimSn. Let us denote by W (P ) a vector-column
of the free parameters for P . By the construction, P ↔ W (P ) is a bijection,
and we may write P = W−1(W (P )). The definition of free parameters means
that for any P ∈ Sn

Pi1j1 =
p∑

k=1

αk
i1j1

wk, (3)

where the coefficients αi1j1 are the same for all P ∈ Sn and wk are the free
parameters. Therefore, any matrix P ∈ Sn satisfies

vec(P ) = ASW (P ), (4)
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where vec(P ) transforms matrix into a vector taking column by column, AS

is a matrix of size n2×p. We will call AS a structure-frame matrix. Obviously,
if (4) holds for some matrix W (P ) then P ∈ Sn. The columns of AS treated
as n×n matrices form a basis in the linear space Sn (rank AS = dim Sn = p).

Now, let A ∈ S1⊗S2 for some structured classes S1 and S2. If A is of size-vector
n = (n1, n2) then A ∈ Sn1

1 ⊗ Sn2
2 . Let W1 and W2 denote the free-parameter

bijections for Sn1
1 and Sn2

2 , respectively, with the structure-frame matrices

AS1 = [aS1
1 , ..., aS1

p ], AS2 = [aS2
1 , ..., aS2

q ], p = dimS1, q = dimS2.

Then,

Sn1
1 = span{W−1

1 (aS1
1 ), . . . , W−1

1 (aS1
p )},

Sn2
2 = span{W−1

2 (aS2
1 ), . . . , W−1

2 (aS2
q )},

(5)

and, obviously,

Sn1
1 ⊗ Sn2

2 = span{W−1
1 (aS1

k ) ⊗ W−1
2 (aS2

l ), k = 1, . . . , p, l = 1, . . . , q}.

Thus, the free-parameters defining A ∈ Sn1
1 ⊗ Sn2

2 can be considered as the
entries of a rectangular matrix of size p× q. Denote this matrix by W (A) and
write W = W1 ⊗ W2 to refer to the corresponding bijection A ↔ W (A).

Theorem 3.1 Let A ∈ Sn1
1 ⊗Sn2

2 , W1 and W2 be the free-parameter bijections
for Sn1

1 and Sn2
2 , and W = W1 ⊗ W2. Then Vn(A) can be written as

Vn(A) = AS1W (A)AT
S2

. (6)

Proof. In line with (5), let

W−1
1 (aS1

k ) = [αk
i1j1

], W−1
2 (aS2

l ) = [βl
i2j2

].

Thus, if

A = [a(i1i2)(j1j2)] ∈ Sn1
1 ⊗ Sn2

2

and

W (A) = [wkl], 1 ≤ k ≤ p, 1 ≤ l ≤ q,

then

a(i1i2)(j1j2) =
p∑

k=1

αk
i1j1

q∑
l=1

βl
i2j2

wkl =
p∑

k=1

q∑
l=1

αk
i1j1

βl
i2j2

wkl,

which proves (6).

According to (6), a low-rank approximation for Vn(A) can be obtained via the
SVD (singular value decomposition) of a matrix of the form AS1W (A)A�

S2
. It

can be done in the following way:
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(1) Compute QR-factorization for matrices AS1 and AS2 :

AS1 = Q1R1, AS2 = Q2R2.

(2) Compute SVD for matrix R1W (A)R�
2 :

R1W (A)R�
2 = UΣV �.

(3) Then, the SVD of Vn(A) reads

Vn(A) = (Q1U)Σ(Q2V )�.

The cost of the QR factorization is O(pn2+qn2) operations; it can be computed
only once for a given structured class, on the preprocessing stage. Given a
particular matrix A in this structured class, we have to compute the SVD of
a smaller rectangular matrix of size p × q.

Now we are ready to conclude that optimal tensor approximations to a two-
level matrix from the tensor product of two structured classes can be ob-
tained so that the Kronecker factors belong to the involved structured classes.
Moreover and somewhat surprisingly, this applies to any Kronecker-product
representation of the optimal approximations.

Theorem 3.2 Let A ∈ Sn1
1 ⊗ Sn2

2 , and assume that

Ar =
r∑

k=1

A1
k ⊗ A2

k, (7)

is the optimal approximation to A such that

||A − Ar||F = min
Br

||A − Br||F

over all matrices Br of tensor rank r. Then A1
k ∈ Sn1

1 and A2
k ∈ Sn2

2 .

Proof. Let Ar be of the form (7), uk = vec(A1
k), vk = vec(A2

k). If Ar is

the optimal approximation of tensor rank r to A, then
r∑

k=1
ukv

�
k is the optimal

approximation of rank r to Vn(A). Consequently, the column-vectors uk and vk

are linear combinations of the columns of Q1U and Q2V , respectively. Since
Q1U = AS1(R

−1
1 U) and Q2V = AS2(R

−1
2 V ), the column-vectors uk and vk

are linear combinations of the columns of AS1 and AS2 , which proves that
A1

k = W−1
1 (uk) ∈ S1 and A2

k = W−1
2 (vk) ∈ S2.

Corollary.Assume that A ∈ Sn1
1 ⊗ Sn2

2 . Then, any left singular vector u of
Vn(A) is such that W−1

1 (u) ∈ Sn1
1 , and any right singular vector v of the same

matrix is such that W−1
2 (v) ∈ Sn2

2 .
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Remark. If a low-tensor-rank approximation is not optimal then its Kro-
necker factors may lose any structure. Fortunately, standard methods for com-
puting low-rank approximations (in particular, incomplete cross approxima-
tion algorithm of [28]) seem to maintain structure.

When constructing a low-rank approximation to Vn(A), we may skip the QR
factorization step and consider a low-rank approximation to W (A):

W (A) ≈
r∑

k=1

ukv
�
k .

Then, the corresponding low-rank approximation to Vn(A) is of the form

Vn(A) ≈
r∑

k=1

(AS1uk)(AS2vk)
�.

This approximation is not optimal in the Frobenius norm (in case of arbitrary
AS1 , AS2) but it still preserve the structure in the Kronecker factors. It follows
from (6) that rank Vn(A) ≤ rank W (A) and, moreover,

||A − Ãr|| ≤ ||A − Ar|| ||AS1 || ||AS2 ||,

which suggests to consider this approximation as quasi-optimal.

Theorem 3.2 obviously generalizes the corresponding result for the T ⊗ T
(doubly Toeplitz) matrices [14]. In a unifying way, it covers all most interesting
classes of multilevel structured matrices.

Example. Consider two-level Toeplitz-plus-Hankel matrices. To find an opti-
mal r-tensor-rank approximation Ar to A ∈ (T + H) ⊗ (T + H), we should
first specify the free parameters for the T + H class. We say that P = [pij]
belongs to T + H if

pij = ti−j + hi+j, i = 1, . . . , n, j = 1, . . . , n.

Therefore, there are 4n − 2 free parameters and their natural selection is

W (P ) = [t1−n, ..., tn−1, h2, ..., h2n].

The structure-frame matrix AT+H is of size n2 × (4n − 2) and of the block
form

AT+H =
[
AT, AH

]
,

where AT and AH are structure-frame matrices for the Toeplitz and Han-
kel matrices, respectively. We can naturally index the rows of the involved
structure-frame matrices by a pair of indices (i, j), i, j = 1, ..., n. Then,

(AT)(ij),s = δi−j,s, (AH)(ij),s = δi+j,s.
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On the preprocessing stage, we are to construct the QR decomposition of
AT+H (we are not aware of explicit formulas and so do this numerically).

To illustrate the above theory, consider a simplified example of two-level
Toeplitz-plus-Hankel matrix with size vector (p, p):

A(i1,i2)(j1,j2) =
1√

(i1 − j1)2 + (i2 − j2)2 + 1
+

1√
(i1 + j1)2 + (i2 + j2)2

.

As is readily seen, it is the sum of two matrices: one from T⊗T and the other
from H ⊗ H. The structure-frame matrix W (A) has a block structure:

W (A) =

⎛
⎜⎝ W TT 0

0 WHH

⎞
⎟⎠ ,

W TT
ij =

1√
i2 + j2 + 1

, i = −p + 1, . . . , p − 1, j = 2, . . . , 2p,

WHH
ij =

1√
i2 + j2

, i = 2, . . . , 2p, j = 2, . . . , 2p.

Table 6.1 shows the Frobenius-norm error of different approximations to A
with tensor rank r obtained by two methods:

• optimal (based on the SVD of Vn(A) with a preliminary QR-factorization
step), and

• quasi-optimal (with the SVD of W (A) only).

The matrix size is n = p2 = 1024.

Rank 3 7 10

Method Relative error

SVD of Vn(A) 6 · 10−2 3 · 10−3 4 · 10−4

SVD of W(A) 2 · 10−1 1 · 10−2 1 · 10−3

Table 6.1 Optimal and quasi-optimal approximations.

Our arguments can be extended over to the matrices with the number of
levels greater than two. However, in this case such a powerful tool as the
theory and algorithms for the singular value decomposition is not available (cf
[1,3]). Thus, in practice we are interested to exploit the case of two levels as
far as possible (cf [4,10,27]). Moreover, accurate low-rank approximation can
be often obtained from picking up only a relatively small number of entries,
which leads to very efficient practical algorithms (cf [8,9,28]).
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4 Tensor properties and separability of symbols

Consider a family of multilevel Toeplitz matrices associated with the Fourier
expansion of a generating function (symbol) F . In the case of p levels, F is a
p-variate function

F (x1, . . . , xp) =
∞∑

k1=−∞
· · ·

∞∑
kp=−∞

fk1, ..., kp exp(i(k1x1 + . . . + kpxp)) (8)

and the entries of A ∈ Tp are given by

a(i1, ..., ip)(j1, ..., jp) = fi1−j1, ..., ip−jp . (9)

By ||A||C we mean the maximal in modulus entry of A, and by ||A||(1) the
1-norm of Schatten (the sum of all singular values of A).

Theorem 4.1 Assume that A ∈ Tp is generated by

F (x1, . . . , xp) ∈ L1(Π), Π = [−π, π]p,

according to (8), (9). Then, a separable approximation

Fr(x1, . . . , xp) =
r∑

k=1

φ1
k(x1) . . . φp

k(xk)

of the symbol F implies that A admits a tensor approximation

Ar =
r∑

k=1

A1
k ⊗ · · · ⊗ Ap

k

with the entrywise error estimate

||A − Ar||C ≤ 1

(2π)p
||F − Fr||L1(Π)

and the Schatten 1-norm estimate

1

N
||A − Ar||(1) ≤ 2

(2π)p
||F − Fr||L1(Π), (10)

where N is the order of A.

Proof. It suffices to take into account the following:

(Ar)i1−j1, ..., ip−jp =

1

(2π)p

π∫
−π

· · ·
π∫

−π

Fr(x1, . . . , xp) exp(−i((i1−j1)x1+ . . . +(ip−jp)xp)) dx1 . . . dxp =

13



1

(2π)p

p∑
k=1

p∏
l=1

⎛
⎝ π∫
−π

φl
k(xk)exp(−i(ik − jk)xk) dxk

⎞
⎠ . �

Note that more general forms of the inequality (10) were studied in [20], even
with the optimal constants therein.

5 Analytical tools for approximate separability

Separation of variables is a topic of permanent interest in approximation the-
ory (cf [1]). The purpose here is to relate the number of separable terms to
the corresponding approximation accuracy. Obviously, the results depend on
the smoothness properties of functions under query. In applications, a closer
attention is obviously paid to functions with certain types of singularities.

Let us consider bivariate symbols F (x1, x2) on Π = [−π, π]2. Then, one can
apply general results for the so-called asymptotically smooth functions [26,27].
F is called asymptotically smooth if it attains a finite value at any point except
for (0, 0) and all its mixed derivatives satisfy the inequality∣∣∣∣∣ ∂k1∂k2

(∂x1)k1(∂x2)k2
F (x1, x2)

∣∣∣∣∣ ≤ cdk1+k2(k1 + k2)!(x
2
1 + x2

2)
(g−k1−k2)/2,

(x1, x2) 
= (0, 0),

for all sufficiently large nonnegative k1, k2 with constants c, d > 0 and a real-
valued constant g indepenedent of k1 and k2. In our case it is sufficient to
consider F only for (x1, x2) ∈ Π.

Theorem 5.1 [27] Assume that F is asymptotically smooth and arbitrary val-
ues 0 < h, q < 1 be chosen. Then for any m = 1, 2, . . . there exists a separable
function Fr(x1, x2) with r terms such that

r ≤ (c0 + c1 log h−1)m,

|F (x1, x2) − Fr(x1, x2)| ≤ c2q
m(x2

1 + x2
2)

g/2, (x1, x2) /∈ [−h, h]2,

where c0, c1, c2 are constants depending on q but not on m.

A direct corollary of this is the following

Theorem 5.2 Let An be a two-level Toeplitz matrix of size-vector n, gener-
ated by asymptotically smooth symbol F such that

h∫
−h

h∫
−h

|F (x1, x2)| dx1dx2 = O(hτ ), τ > 0,

14



and assume additionally that g > −4. Then, for any ε > 0 there exists a
tensor approximation An

r ∈ T ⊗ T with r terms such that

r ≤ C1 log2 ε−1,

||An − An
r ||C ≤ C2ε,

where C1 and C2 do not depend on n.

Proof. Given ε > 0, choose h so that hτ ∼ ε and chose m so that qm ∼ ε.
Also, take into account that the function (x2

1 + x2
2)

g/2 will be L1-integrable on
[−π, π]2 for g > −4. It remains to have recourse to Theorems 5.1 and 4.1. �

Applications also give rise to functions like, for instance,

F (x1, x2) = Φ(ξ, θ), ξ = x2
1, θ = x2

2, (11)

Φ(ξ, θ) =
exp(iκ(ξ + θ)ν)

(ξ + θ)ν
, 0 < ν < 2, κ ≥ 0. (12)

that are not asymptotically smooth. Note, by the way, that the derivatives of
this F are not bounded. Acquisition of separable approximations in such cases
requires some special tools. An excellent vehicle for many practical cases can
be developed on the base of E. T. Whittaker’s cardinal function (“a function
of royal blood”, by his words) and Sinc-functions [23]. This vehicle works good
also for many asymptotically smooth functions.

Consider the case

F (x1, x2) = F(ξ, θ), ξ =
(

x1

π

)2

, θ =
(

x2

π

)2

,

then 0 ≤ ξ ≤ 1 and 0 ≤ θ ≤ 1. The goal is approximate separation of variables
ξ and θ. The approach of [23] capitalizes on outstanding properties of functions
of complex variable z analytic in a strip |Imz| ≤ d. Thus, the enterprize must
begin with finding a way to make the initial problem fit into that framework.
A useful possibility is the change of variable

ξ =
1

cosh u
, cosh u =

exp(u) + exp(−u)

2
, −∞ ≤ u ≤ +∞,

with coming back to ξ in the end using the formula

u = log(ξ−1(1 +
√

1 − ξ2))

or, alternatively,

u = log(ξ−1(1 −
√

1 − ξ2)).

In order to separate u and θ we make use of the assumption that

g(u, θ) ≡ F(
1

cosh u
, θ)

15



can be considered as the trace of a function

g(z, θ) ≡ F(
1

cosh z
, θ)

that is analytic with respect to z in the strip |Imz| ≤ d. Moreover, the con-
structions of [23] require that g(z, θ) enjoys as well the following properties:

J (g, d, θ) ≡
∞∫

−∞
(|g(u + id, θ)| + |g(u − id, θ)|) du < +∞, (13)

lim
u→∞

d∫
−d

(|g(u + iv, θ)| + |g(−u + iv, θ)|) dv = 0, (14)

|g(u, θ)| ≤ c exp(−p|u|), c, p > 0. (15)

Then g(u, θ) can be approximated by

gn(u, θ) ≡
n∑

k=−n

g(kh, θ)Skh(u), (16)

where

Skh(u) =
sin

(
π
h
(u − kh)

)
(

π
h
(u − kh)

) , (17)

and h can be chosen so that

|g(u, θ) − gn(u, θ)| ≤ P exp(−Q
√

n), P,Q > 0. (18)

One can see that the interpolation formula (16) performs the wanted job of
separation of u and θ. All the same, one should be careful with the above
construction because P and Q in the error estimate (18) may depend on θ.
Moreover, even d might appear to depend on θ. Note also that the properties
(13), (14), (15) are not taken for granted, they must be verified and are likely
not to hold initially but appear only after some suitable transformation of the
problem. Nevertheless, the approach can be adapted to successfully treat, for
example, the function (11), (12).

Let us give more details pertinent to functions of the form (12). Take some
µ > 0 and set up

F(ξ, θ) = ξµΦ(ξ, θ).

Then, consider

g(z, θ) =
1

(cosh z)µ
Φ

(
1

cosh z
, θ

)
.

First of all, note that g(z, θ) is analytic at any z such that

cosh z 
= 0,
1

cosh z
+ θ 
= 0.

16



It is not difficult to see that g(z, θ) is analytic in any strip |Imz| ≤ d < π/2.
Verification of (13) results in the observation that

J (g, d, θ) = O
(

1

θν

)
.

Condition (14) is evidently fulfilled. Concerning (15), we find that it holds
true with

c = O
(

1

θν

)
, p = −µ.

Consequently, the estimate (18) is valid. Some further details of theory in [23]
can lead to the assertion that

P = O
(

1

θν

)

while Q is greater than
√

µ.

6 Truncation algorithms for the inverse matrices

In many cases when A is a matrix (of order n) of low tensor rank, it appears
as well that A−1 is of low tensor ε-rank (which means that there exists F such
that ||F || ≤ ε and the tensor rank of A−1 + F is much smaller than n). In the
next section we substantiate this claim by numerical experiments. But first
consider some computational tools proving to be very efficient for computation
of approximate inverses in the tensor format. The tools we discuss below are
based on the Newton iteration.

In numerical linear algebra, the Newton iteration for the inversion of matrices
is attributed to Hotelling [12] and Schulz [24]. It is of the form

Xi = 2Xi−1 − Xi−1AXi−1, i = 0, 1, . . . , (19)

where X0 is some initial approximation to A−1. Since I−AXi = (I−AXi−1)
2,

the iterations (19) converge quadratically, provided that ||I−AX0|| < 1. Each
iteration requires two matrix multiplications. Since this is quite expensive for
general matrices, the method is usually considered as a supplementary tool to
refine some approximation which is obtained by a different method.

In case of certain structured matrices one Newton iteration can become cheap,
which may allow us to start them from a very rough initial guess. Application
of the Newton iteration to matrices with the so-called displacement structure
was recently studied in [2,19]. To make computations feasible, in these appli-
cations each Xi is replaced by some approximation (truncation) of low dis-
placement rank. Remarkably, it is proved in [19] that in this case, under some
assumptions, the truncated Newton iteration still converges quadratically.
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Now, let us assume that A is a sum of r tensor products. When applying (19),
we perform two matrix multiplications at every iterative step. If the matrices
to be mutiplied are in the tensor format

M1 =
r1∑

i=1

A1
i ⊗ B1

i , M2 =
r2∑

i=1

A2
i ⊗ B2

i ,

then

M1M2 =
r1∑

i=1

r2∑
j=1

(A1
i A

2
j) ⊗ (B1

i B
2
j ).

Therefore, the matrix-by-matrix complexity is O(r1r2n
3/2), which is much

smaller than the standard O(n3) rule. While maintaining the tensor format
during the Newton iteration, we observe, all the same, that the exact tensor
rank can be squared at every iterative step, which slows down the algorithm.
Fortunately, it might not apply to the tensor ε-rank. Thus, Xi is substituted
with an appropriate approximation Yi of smaller tensor rank so that

||Xi − Yi||F ≤ ε||Xi||F .

We will write

Yi = Rε(Xi).

Computation of Yi reduces to a lower-rank approximation to a given low-
rank matrix; this can be done efficiently by the SVD-based procedure called
recompression [10,28].

Truncated Newton iteration in the tensor format :

Xi = Rε(Xi−1(2I − AXx−1)), i = 1, 2, . . . . (20)

The iterations are stopped when ||I − AXi||F ≤ ε.

Some theory behind the truncated Newton iteration in the tensor format has
been recently proposed in [18]. In particular, if the tensor ranks of A and
A−1 do not exceed r and the truncation retains r term on all steps, then the
convergence is still quadratic. Moreover, if r is an upper estimate on the tensor
ε-rank of A−1, then the residual ||I − AXi|| diminishes quadratically until it
gets smaller than a certain quantity related to this ε [18].

Following [4], we speed up the matrix multiplications using a sparsification of
the tensor factors via a discrete wavelet transform (for example, one of the
Daubechies family; for problems related to irregular grids we advocate the
wavelet-type transforms constructed in [17]). We get from A and X0 to the
transformed matrices

Ã = (W ⊗ W )A(W� ⊗ W�), X̃0 = (W ⊗ W )X0(W
� ⊗ W�),

18



where W represents a one-dimensional wavelet transform, and then get from
Ã and X̃0 to appropriate pseudosparse matrices (nullifying the entries using
some threshold). The pseudosparsity of the tensor factors helps to diminish the
matrix-by-vector complexity. Numerical experiments confirm that the wavelet
sparsification coupled with tensor approximations is a really powerful (and
quite general) tool (an adequate theory is still to be thought of).

A very important problem is how to select an initial approximation X0. It is
well-known that, for an arbitrary matrix A, we can set

X0 = αA�,

and if α < σ2
min(A) then

||I − AX||2 < 1.

However, the Newton iteration may converge very slow in this case. We can
be better off with the following scheme:

1. Set X0 = αA� and perform the Newton iteration with an accuracy δ � ε
to find a rough approximation M to the inverse. The δ-truncated Newton
iterations are expected to have a small complexity due to a small number
(and pseudosparsity) of the tensor factors.

2. Use M as a new guess to start the Newton iteration with finer accuracy ε.

Of course, this scheme can be extended to three or more steps with relative
errors δ1, δ2, and so on.

7 Numerical results

We illustrate the proposed technique on the following two-level (doubly) Toeplitz
matrices with separable symbols:

(1) F1 = 2 − cos x − cos y (Discrete 5-point Laplacian on a uniform grid).
(2) A family of symbols with increasing condition numbers:

Gr(x) = x2r + y2r, r = 1, 2, 3.

The condition numbers of these matrices grow asymptotically as O(n2r).
(3) F2 = (2 − cos x − cos y)2.

By Theorem 4.1, separability of the symbols implies that the corresponding
doubly Toeplitz matrices are in the tensor format: with 2 terms for the symbols
F1, Gr and with 3 terms for F2. Since the symbols are positive (except for one
zero point x = y = 0), the reciprocal symbols are approximately separable,
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which suggests (yet does not prove in the rigorous sense) that the inverse
matrices should be of low tensor rank. The latter is confirmed numerically
(see the results in Table 7.1). Typical behavior of approximate tensor ranks
when n increases is shown in Table 7.2 (for symbol F1).

Symbol F1 G1 G2 G3 F2

n 1282 1282 1282 642 322

Tensor ε-rank 9 9 10 7 12

Table 7.1 Tensor ε-rank of the inverse matrices, ε = 10−4

n 322 642 1282

Tensor ε-rank 7 8 9

Table 7.2 Dependence of the tensor ε-rank on n, symbol F1, ε = 10−4.

We inverted the matrices using the algorithm from Section 6 with two levels of
accuracy. For example, in the case of F1 and n = 16384 we selected δ = 10−3.
The first step of our two-step Newton’s iteration consisted of 39 iterations
and took 55.3 seconds. The final residue (in the Frobenius norm) was 1.6 (the
initial residue was 15881). On the second step there were only 5 iterations but
they took 77.4 seconds. The final residue was 5.5 · 10−6.

Approximate sparsity of the tensor factors after the wavelet transform is con-
firmed by the fill-in ratio shown in Table 7.3 for symbol F1 (since the matrix
generated by F1 is symmetric, Ui = Vi, therefore the filling of Vi is equal to
the filling of Ui).

Which factor 1 2 3 4 5 6 7

Fill-in ratio 0.5 0.59 0.60 0.59 0.62 0.63 0.63

Table 7.3 Fill-in ratio for the first tensor factors, ε = 10−4, n = 16384.

Finally, we verify the following conjecture about structure of the tensor factors.
If A = T1⊗. . .⊗Tr is the tensor product of nonsingular Toeplitz matrices, then
A−1 = T−1

1 ⊗ . . .⊗T−1
r is the tensor product of matrices with low displacement

rank (the displacement rank of M is defined to be the rank of M − ZMZ�,
where M = [δi,j+1] [13], [11], [16]). We may conjecture that the displacement
ranks of the factors pertaining to A−1 remain low also in the case when A
is a sum of tensor products of Toeplitz matrices. To confirm our hypothesis,
we present maximum and mean displacement ε-ranks for factors in tensor
representation of A−1. The figures below seem to support the conjecture.
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Symbol F1 G1 G2 G3 F2

n 1282 1282 1282 642 322

Max. displacement ε-rank 16 15 13 10 6

Mean displacement ε-rank 12.2 11.2 9 6 4

Table 7.4 Displacement ε-ranks of the tensor factors for A−1, ε = 10−4.

The main purpose of this paper is to present some alternative ideas and tech-
niques. Our first experiments are encouraging, however more work needs to
be done to develop efficient implementations. The work on these implementa-
tions in progress, and it will be summarized elsewhere with a more detailed
description, timings and details. Rigorous theory behind the given sketch of
numerical results is also part of the on-going research. The use of these ideas
could be a possible way for overcoming the negative results in [15], [22].
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