

Институт физики атмосферы им. А.М. Обухова РАН

Пульсационный метод определения турбулентных потоков в приземном слое атмосферы. Исследование газо- и энергообмена над водной поверхностью

Ирина Репина

Содержание доклада

Способы реализации ЕС метода в морских и наземных условиях.
 Обзор используемых коррекций и приближений.
 Результаты наблюдений энерго- и газообмена атмосферы и морской поверхности в прибрежной зоне Черного моря и в Арктике.
 Сравнение результатов наблюдений с расчетами по балк-методам.
 Границы применимости различных теоретических методов расчета турбулентных потоков.

Микрометеорология исследует структуру атмосферной турбулентности и потоки энергии и вещества между атмосферой и подстилающей поверхностью.

Инерционно-диссипативный метод

Работает на основе предположения о локальной изотропии и о существовании инерционного подинтервала. Потоки оцениваются из анализа уравнений баланса турбулентной энергии и бюджета дисперсий температуры и удельной влажности. Оценки диссипаций можно получить по данным измерений временных производных от флуктуаций.

 $0 = \Phi_m \left(\frac{z}{L}\right) - \frac{z}{L} - \frac{\kappa \cdot z}{u_*^3} \frac{\partial \langle we \rangle}{\partial z} - \frac{\kappa \cdot z}{u_*^3} \frac{\partial}{\partial z} \frac{\langle wp \rangle}{\rho} - \frac{\kappa \cdot z}{u_*^3} \varepsilon$ Уравнение баланса турбулентной энергии

С использованием:

 $S(k) = \alpha \varepsilon^{2/3} k^{-5/3}$ kS(k) = fS(f)

$$u_* = \left(\frac{2\pi\lambda z}{\langle u \rangle}\right)^{2/3} \frac{S_{u,w}(f)f^{5/3}}{\alpha_{u,w}(2\pi)^{2/3}} \left(\Phi_m\left(\frac{z}{L}\right) - \left(\frac{z}{L}\right)\right)$$

Градиентные метод (Теория подобия Монина-Обухова)

Турбулентный режим на всех участках спектра, кроме интервала диссипации, полностью определяется тремя размерными параметрами:

$$u_* = \left(-\overline{u'w'}\right)^{\frac{1}{2}} \qquad \frac{Q}{c_p\rho} = \overline{w'T'} \qquad \frac{g}{T_0}$$
$$L = -\frac{u_*^3}{\kappa \frac{g}{T_0} \frac{Q}{c_p\rho}} \qquad V = \frac{u_*}{\kappa} \qquad T_* = -\frac{1}{\kappa u_*} \frac{Q}{c_p\rho}$$

 $T(z), U(z), q(z) = f(\varsigma)$

 $S = \frac{2}{L}$

$$\Delta u = u_z - u_s = \frac{u_*}{\kappa} \left[\ln \frac{z}{z_o} - \Psi_u(\xi) \right] \qquad \Delta T = T_z - T_s = T_* \left[\ln \frac{z}{z_o} - \Psi_T(\xi) \right] \qquad \Delta q = q_z - q_s = q_* \left[\ln \frac{z}{z_o} - \Psi_q(\xi) \right]$$

Измерения метеоэлементов проводятся на нескольких уровнях, по известным формулам теории подобия находятся характеристики турбулентного режима u_* , θ_* , q_* *u L*, а затем и потоки скрытого и явного тепла:

$$\tau = \rho u_*^2$$

 $H = -\kappa c_p \rho u_* \theta_*$ $LE = \kappa u_* q_*$

Дистанционные методы определения потоков

- 1. с помощью СВЧ и ИК радиометров
- 2. спутниковых фотографий солнечных бликов,
- 3. самолетных лазеров
- 4. радарных и инфракрасных изображений морской поверхности.

Такие измерения перспективны, но их результаты во многом зависят от сравнения с наземными данными.

Основная проблема применения методов спутниковой радиометрии для анализа теплового взаимодействия между океаном и атмосферой связана с тем, что измеряемые со спутников характеристики собственного излучения как в СВЧ-, так и в ИК- диапазоне формируется не только в приводном 10- метровом, но и в вышележащих слоях атмосферы.

Методы:

Восстановление температурного градиента (профиля) в приповерхностном слое океана, величина и знак которого связаны с величиной вертикального турбулентного потока явного тепла.

Проблема:

Современные спутниковые ИК- и СВЧ- радиометрические средства, характеризующиеся точностью определения ТПО и ее вариаций в лучшем случае 0,5 — 1 °С, не гарантируют надежной индикации не только величины, но и знака температурного градиента в приповерхностном слое океана.

Определение тепловых потоков из косвенной (статистической) взаимосвязи между интегральными (усредненными по высоте) значениями температуры и влажности атмосферы, вариации которых надежно регистрируются СВЧ- и ИКрадиометрическими измерениями в конкретных участках спектра, с температурой и влажностью нижних слоев атмосферы.

Эта связь обусловлена существующим в приводном и пограничном слоях воздуха механизмом турбулентного перемешивания тепла и влаги (которое в атмосфере намного более развито и интенсивно по сравнению с океаном) и проявляется более отчетливо для их среднемесячных (или декадных) значений, свободных от влияния часовых и суточных возмущений. Поэтому именно на таких временных масштабах получены обнадеживающие результаты по применению спутниковых методов для определения тепловых потоков на границе раздела океан-атмосфера.

Характеристики различных методов определения турбулентных потоков:

1. Инерционно-диссипативный метод обладает по сравнению с пульсационным методом определенными преимуществами — он не требует измерений вертикальных пульсаций скорости ветра и установки датчиков в строго заданном направлении, что позволяет использовать и подвижные основания. Но в его основе лежат предположения о локальной изотропии, существовании инерционного интервала и малости дивергенции потоков. Эти предположения, особенно при сильно устойчивой и неустойчивой стратификации и при малых значениях потоков могут и не выполняться.

2. Профильный метод привлекателен тем, что позволяет получить значения турбулентных потоков из простых профильных измерений метеопараметров (причем, достаточно измерений на двух уровнях). Но его ошибки вызваны недостаточным знанием вида универсальных функций и зависимостью используемого при расчетах масштаба Монина-Обухова от искомых потоков. И самым серьезным источником ошибок градиентного метода являются погрешности самых измерений, выполняемых на платформах, которые неизбежно искажают воздушный поток.

3. **Ародинамические балк-формулы**. В них используются стандартные метеорологические измерения и коэффициенты обмена, определяемые параметрически. В настоящее время существуют десятки балк-алгоритмов, отличающихся формой задания коэффициентов обмена. Но все аэродинамические методы основаны на статистических законах и дают средние значения коэффициентов, близкие к расчетным, только для большого массива измерений, выполненных при различных условиях. Он бывает вполне достаточен для описания общих тенденций энергообмена и для описания осредненных по пространству или времени потоков.

Представление Рейнольдса: описание турбулентного потока как композиции средней и пульсационной составляющей

Время осреднения должно быть значительно больше, чем период флуктуаций.

а – среднее значение сигнала а* - мезомасштабная составляющая

а' – пульсационная составляющая

$A = a + a^* + a^\prime$

 $e = \frac{1}{2} \overline{u'_{i}u'_{i}}$ - Интенсивность турбулентности

 Ковариации двух процессов

 $r_{uw} = \frac{\overline{u'w'}}{\sigma_u \sigma_w} = -\left(\frac{\sigma_u}{u_*} \cdot \frac{\sigma_w}{u_*}\right)^{-1}$

$$r_{wT} = \frac{\overline{w'T'}}{\sigma_w \sigma_T} = -\left(\frac{\sigma_w}{u_*} \cdot \frac{\sigma_T}{\frac{1}{u_*} \frac{Q}{c_p \rho}}\right)^{-1}$$

Вторые моменты или коэффициенты корреляции

Мгновенные значения скорости ветра и температуры и их ковариации.

Пульсации двух компонент скорости ветра и их ковариации.

Пульсационный метод определения турбулентных потоков

Пульсационный метод определения потоков

•Турбулентные потоки рассчитываются как ковариации между двумя высокочастотными временными сериями записи вертикальной скорости ветра и скаляра, которым может быть температура, влага или любой другой газ, измеренные в той же точке в пространстве и во времени.

•Выражения для определения потоков являются модификацией основной формулы Рейнольдса для добавочных турбулентных напряжений, относящихся к уравнению для концентрации примеси, т.е. представляют собой прямое определение потоков [Монин, Яглом, 1965]

•Т.е. само определение турбулентного потока показывает, что поток этот может быть приравнен одноточечному смешанному моменту пульсаций скорости ветра в вертикальном (по отношению к поверхности Земли) направлении и пульсаций примеси(температуры).

Программное обеспечение для реализации

пульсационного метода

- EDIRE (University of Edinburg, UK)
- ALTEDDY (Alterra)
- ECPack (University of Wageningen)
- TK3 (University of Bayreuth, Germany)
- EddySoft (Max-Plank-Institute Jena, Germany)
- Eth-flux (Technical University Zurich, Swiss)
- ECO2S (IMMECC-EU Univ. of Tuscia, Italy)
- EddyPro (Licor, USA)
- EddyUH (University of Helsinki, Finland)

An Observational Arctic Flux Network Supporting the International Arctic Systems for Observing the Atmosphere (IASOA) and Global Cryosphere Watch (GCW)

> Ny-Alesund 30 m

Tiksi

20 m

Summit, Greenland 50 m Инструменты для измерения потоков: акустический анемометр+ Высокочастотный газовый анализатор

Измерения с частотой 10-20 Гц трех компонент скоростей ветра, Температуры, концентраций CO₂, H₂O, NO₂ и т.д.

Газоанализатор открытого типа

Газоанализатор закрытого типа

Акустический анемометр измеряет скорость звука по времени его прохождения и расстояния между микрофоном и излучателем.

Скорость ветра рассчитывается из скорости звука по трем направлениям.

Акустическая температура

$$\theta_{S} = \frac{m_{d}}{\gamma R} \frac{\left(c_{1}^{2} + c_{2}^{2} + c_{3}^{2}\right)}{3} = \frac{1}{403} \frac{\left(c_{1}^{2} + c_{2}^{2} + c_{3}^{2}\right)}{3}$$

Э

Open-path gas analyzers

Advantages:

- Low power consumption (~ 8-10 W)
- Small high frequency flux loss

Disadvantages:

- Flux correction for H2O and T
- fluctuations (Webb et al., 1980)
- Sensor self heating (Burba et al., 2008)
- Separation distance from the sonic anemometer
- Not working with adverse weather (rain, fog, snow)

Closed-path gas analyzers

Licor 6262, 7000, 7200 (CO2 and H2O)

Advantages:

Photos by LICOR Inc.

- Working with adverse weather (rain, fog, snow)
- Temperature fluctuations are damped.
- On-line calculation of mixing ratio (no need for WPL)

Disadvantages:

- Need high power (~10 + 40 W for the pump)
- Except for Licor 7200, potentially large flux attenuation at high frequency (depending on EC system set-up)
- Time lag and flux attenuation of H2O due to the sampling line and filters affected also by ambient condition (relative humidity) 94

Коррекции метеорологических данных, используемые для расчета турбулентных потоков.

Коррекция	Ошибка в вычислении потоков			
Удаление всплесков	0-15 %			
Выбор интервала осреднения	5-10 %			
удаление тренда	0-30%			
Tild-коррекция (поворот анемометра)	0-25%			
Коррекция временного сдвига между сигналами	5-15%			
Коррекция частотных характеристик	5-30%			
Коррекция акустической температуры	0-10%			
WPL-коррекция (учет влияния флуктуаций плотности воздуха)	0-50%			
Контроль качества данных	0-20%			

Прямые (Eddy-covariance) измерения

С фиксированной мачты

С борта судна

Измерения со льда

Координатная система для коррекции качки

До коррекции

После коррекции

Удаление пиков

1. $(mean(z) - \sigma(z) \cdot a) < z_i < (mean(z) + \sigma(z) \cdot a)$

2. Как ограничители используются максимально и минимально возможные физические величины

3. Все величины, которые превосходят в 5.5 раз стандартное отклонение в окне из 10 величин, отмечаются как выбросы. Но если этот критерий отбраковывает 4 и более величины в строке, они не отбрасываются и считаются «реальными».

Коррекция наклона анемометра

Угол первого наклона

$$\gamma = \tan^{-1}\left(\frac{v_m}{u_m}\right)$$

Угол второго наклона

$$\beta = \tan^{-1}(\frac{w_1}{u_1})$$

Угол третьего наклона

$$\alpha = \frac{1}{2} \tan^{-1} \left(\frac{2\overline{v_2 w_2}}{\overline{v_2^2 - w_2^2}} \right)$$

Удаление тренда

Коррекция акустической температуры

$$T_{S} = T_{a} (1 + 0.32 \cdot 10^{3} R_{v} \frac{\rho_{v}}{p_{a}} T_{a})$$

Здесь R_V – газовая постоянная для водяного пара, (=0.46148 J/(г*К)), ρ_V – плотность водяного пара, измеренная с помощью Li—7500, (г/м³), p_a – атмосферное давление, измеренное с помощью Li – 7500, (кПа).

В некоторых случаях уравнение не имеет решения. Тогда реальная температура находится из уравнения:

$$T_s = T_a \left(1 + 0.32 \cdot \frac{p_V}{p_a}\right)$$

Первое связано с преобразованием измеренного объемного содержания какой-либо скалярной примеси (например, водяного пара) в массовый параметр, такой как удельная влажность или массовая доля водяного пара.

Второе направление – это коррекция вертикальной скорости ветра за счет учета флуктуаций плотности водяного пара.

Вклад WPL-коррекции в расчет потока углекислого газа при различных внешних условиях

Коэффициент корреляции потоков тепла и импульса, полученных с применением пульсационного метода, с полученными другими методами

Скорость Поток тег Ветра, м/с			оток те	іла, Н		Динамическая скорость u _*		
		ИД		ПМ	COARE	ИД	ПМ	COARE
	0-5 (325)	25) 0.76 5 0.92		0.66	0.43	0.78	0.68	0.48
and the second	5 - 1 5 (687)			0.89	0.76	0.96	0.80	0.77
	>15 (83)	0.73		0.73	0.68	0.86	0.67	0.51
Параметр Г устойчи			Поток тепла, Н			Динамическая скорость u _*		
вости $\zeta = \frac{z}{L}$ ИД		ИД	ПМ	COARE	ид	ПМ	COARE	
-0.05 > ζ (305) 0.68			0.68	0.62	0.41	0.71	0.60	0.43
(675) $-0.05 > \zeta < 0.05$		0.92	0.91	0.86	0.97	0.87	0.81	
$\xi > 0.05(115)$ (0.61	0.66	0.50	0.77	0.59	0.48	

Поток тепла ИД Вт/м²

Сравнение измеренных и рассчитанных по различным методам турбулентных потоков тепла. Район измерений: Арктика, зона полыней и разводий

Определение коэффициентов обмена в аэродинамических балк-формулах:

$$C_{D} = \frac{\tau_{turb}}{\rho_{a}U_{10}^{2}} = \frac{u_{*}}{U_{10}^{2}}$$

$$C_{H} = \frac{w'T'}{u_{z}(T_{0} - T_{z})}$$

$$C_{E} = \frac{w'q'}{u_{z}(q_{0} - q_{z})}$$

Коэффициент сопротивления морской поверхности

 $C_D^{-1/2} = C_{Dn}^{-1/2} - \frac{\Psi_u(z/L)}{L}$

 $C_{E} = \alpha_{q} C_{D} \frac{\left[\ln \frac{z}{z_{0}} - \Psi_{u} \left(\frac{z}{L} \right) \right]}{\left[\ln \frac{z}{z_{q}} - \Psi_{q} \left(\frac{z}{L} \right) \right]}$

- Число Стентона
- Число Дальтона

Из выводов теории подобия:

2

$$C_{H} = \alpha_{T} C_{D} \frac{\left[\ln \frac{z}{z_{0}} - \Psi_{u} \left(\frac{z}{L} \right) \right]}{\left[\ln \frac{z}{z_{T}} - \Psi_{T} \left(\frac{z}{L} \right) \right]}$$

Зависимость коэффициента сопротивления от температурной стратификации

Зависимость коэффициента сопротивления от скорости ветра при различных режимах стратификации

$$C_{Dn}^{-1/2} = C_{D}^{-1/2} + \frac{\Psi_{u}(\zeta)}{\kappa}$$

 $\frac{z}{L} < -0.05 \ [Grachev, Fairall, 1998]$ $\Psi_u(\zeta) = \frac{\Psi_{kanzas} + \zeta^2 \Psi_{convectiv}}{1 + \zeta^2}$ $\Psi_{kanzas} = 2\ln\left(\frac{1+x}{2}\right) + \ln\left(\frac{1+x^2}{2}\right) - 2\arctan x + \frac{\pi}{2}$ $\Psi_{convectiv} = \frac{3}{2}\ln\frac{y^2 + y + 1}{3} - \sqrt{3}\arctan\frac{2y+1}{\sqrt{3}} + \frac{\pi}{\sqrt{3}}$ $x = (1 - 16\zeta)^{\frac{1}{4}} \qquad y = (1 - 13\zeta)^{\frac{1}{3}}$

 $\zeta = \frac{z}{L} \qquad \Psi_{u} = \int_{0}^{\zeta} \frac{1 - \varphi_{u}(\xi)}{\xi} d\xi$ $\frac{z}{L} > 0.05 \quad [Rutcherson \, et \, al., 2001]$ $\varphi_{m} = 1 + a_{1}\xi + (1 + c_{1} - d_{1}\xi)\xi b_{1} \exp(-d_{1}\xi)$ $\Psi_{m} = -b_{1}c_{1}/d_{1} - a_{1}\xi - b_{1}(\xi - c_{1}/d_{1})\exp(-d_{1}\xi)$

Коэффициент сопротивления

Ровный лед со снежницами

Относительное распределение значений коэффициента сопротивления над различными поверхностями

Всторошенная поверхность

^ровная поверхность, покрытая снегом

Сравнение рассчитанных профильным методом и измеренных потоков тепла и импульса про действии катабатического ветра при слабо-устойчивой стратификации

- 1. Универсальные функции в виде: $\varphi_m = \varphi_H = 1 + a_1 \frac{z}{L} + \left(1 + c_1 d_1 \frac{z}{L}\right) \frac{z}{L} b_1 \exp\left(-d_1 \frac{z}{L}\right)$
- 2. Замена параметра устойчивости на число Ричардсона:

$$\frac{z}{L} = \left(1.89\ln\left(\frac{z}{z_0}\right) + 44.2\right) \cdot Ri^2 + \left(1.18\ln\left(\frac{z}{z_0}\right) - 1.5\ln\left(\frac{z}{z_H}\right) - 1.37\right)Ri$$

Распределение потоков СО₂ ммол*м⁻²*сут.⁻¹ (а) море Лаптевых 2005 г. (б)

Снежницы на поверхности льда

Зависимость потока углекислого газа от концентрации снежниц

Прямые измерения потока СО₂

Турбулентный поток CO₂ над тающим льдом (припай)

поток CO2 при ветре на берег (слева) и and от берега (справа)

Потоки СО2 в тундре

Зависимость потока метана от направления ветра в Тикси

1. Традиционные параметризации атмосферного пограничного слоя основаны на теории подобия и коэффициентах турбулентного переноса, описывающих взаимодействие атмосферы с земной поверхностью и диффузию примесей в оперативных моделях загрязнения воздуха, прогноза погоды и изменений климата.

Основные недостатки:

- 1. Неприменимость к экстремальным условиям стратификации
- 2. Неприменимость к течениям над сложными поверхностями

Решения в рамках классической теории:

- 1. Уточнение функций подобия
- 2. Введение дальнейших поправок в традиционные турбулентные замыкания

Недостаточное знание структуры приводного слоя атмосферы и обмена его количеством движения, теплом и влагой с волнующейся водной поверхностью при различных стратификациях атмосферы и над неоднородной поверхностью является в настоящее время основным препятствием для правильного функционирования оперативных, глобальных и региональных моделей прогноза погоды и экспертных моделей для климата и его изменений.