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Abstract A combined theoretical and numerical analysis of an experiment devoted to the excitation of Görtler
vortices by localized stationary or vibrating surface nonuniformities in a boundary layer over a concave
surface is performed. A numerical model of generation of small-amplitude disturbances and their downstream
propagation based on parabolic equations is developed. In the framework of this model, the optimal and the
modal parts of excited disturbance are defined as solutions of initial-value problems with initial values being,
respectively, the optimal disturbance and the leading local mode at the location of the source. It is shown
that a representation of excited disturbance as a sum of the optimal part and a remainder makes it possible
to describe its generation and downstream propagation, as well as to predict satisfactorily the corresponding
receptivity coefficient. In contrast, the representation based on the modal part provides only coarse information
about excitation and propagation of disturbance in the range of parameters under investigation. However, it is
found that the receptivity coefficients estimated using the modal parts can be reinterpreted to preserve their
practical significance. A corresponding procedure was developed. The theoretical and experimental receptivity
coefficients are estimated and compared. It is found that the receptivity magnitudes grow significantly with the
disturbance frequency. Variation of the span-wise scale of the nonuniformities affects weakly the receptivity
characteristics at zero frequency. However, at high frequencies, the efficiency of excitation of Görtler vortices
depends substantially on the span-wise scale.

Keywords Boundary layer · Görtler vortices · Surface roughness · Surface vibrations · Receptivity ·
Instability · Optimal disturbances · Local modes

1 Introduction

The Görtler instability may emerge in boundary layers over concave surfaces under the action of centrifugal
forces in a wide range of free-stream speeds and Mach numbers [48]. Such instability is able to lead to
formation of stream-wise vortices, which may exhibit a distinct growth in the stream-wise direction altering
significantly heat and mass transfers, affecting skin friction, leading to flow turbulization and modifying other
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flow parameters important for various applications. Therefore, problems of excitation and evolution of steady
and unsteady Görtler vortices are of great importance for aerodynamic devices and vehicles, as well as for
their components with curved aerodynamic surfaces such as air inlets of engines, blades of turbo-machines,
flaps and slats. Hence, the problem of Görtler instability has been investigated for a long time experimentally,
theoretically and numerically (see, e.g., reviews in [9,19,20,30,48]). The majority of these studies are devoted
to stationary Görtler vortices.

For the first time, the stream-wise vortices, associated with the centrifugal instability of the shear flow
between two rotating cylinders, were found and studied both theoretically and experimentally by Taylor [59].
Experiments by Clauser and Clauser [14] showed that the laminar boundary layers over concave walls become
turbulent at lower Reynolds numbers than those over flat or convex surfaces that indicated the presence of a
similar instability mechanism. Later Görtler [24], using the approximation of a locally parallel undisturbed
flow, developed a normal-mode approach to show that the same kind of instability can occur in boundary layers
over concave surfaces when a certain parameter Gö = Re

√
δ/R, called the Görtler number, exceeds a critical

value. Here Reynolds number is defined as Re = Ueδ/ν, where the length δ characterizes the boundary-layer
thickness, Ue is the free-stream velocity at the boundary-layer edge, ν denotes the kinematic viscosity of the
fluid, and R is the radius of wall curvature. The critical Görtler number depends on the disturbance span-wise
wave-number β (normalized usually by the length scale δ). The dependence Gö(β) forms a neutral stability
curve defined, for stationary instability modes, in the (Gö, β)-plane. For traveling (nonstationary) Görtler
vortices, there is a family of neutral curves in the (Gö, β)-plane for various fixed values of the disturbance
frequency ω or, alternatively, there is a neutral stability surface in the three-dimensional (Gö, β, ω)-space.

A direct connection between the earlier boundary-layer turbulization on concave surfaces found in [14] and
Görtler instability has been demonstrated by Liepmann [43]. First direct experimental evidences of existence
of stationary Görtler vortices were obtained by the china-clay surface visualization in [25] and by the hot-wire
technique in [57]. The experiments and subsequent analyses have shown that in boundary-layer flows, this
instability develops in space, i.e., it has a convective character. Later, numerous flow visualizations and hot-
wire measurements (see, e.g., [35]) have helped to improve significantly the understanding of this instability
and to evaluate its influence on the laminar-turbulent transition in boundary layers.

A series of studies were carried out with excitation of controlled perturbations. In such experiments [6]
performed in water, some span-wise periodic steady disturbances were introduced into a boundary layer by
means of an array of heated stream-wise-oriented wires. The instability was detected via an observation of
deformation of span-wise timelines formed by hydrogen bubbles. Some points belonging to a short-wave
part of the neutral stability curve were obtained. However, the amplitudes of the excited disturbances were
quite large because it would be otherwise difficult to detect them by means of the visualization method. In
experiments of [1,62], a set of thin plates located in free-stream generated steady Görtler vortices; some results
obtained in [6] were reproduced, and also additional points of the neutral stability curve were documented.

However, the disturbance growth rates obtained experimentally did not agree for a long time with those
calculated by the linear stability theory in the whole range of span-wise wave-numbers and Görtler numbers
studied [18,19]. One of the reasons for the discrepancy was associated with nonlinear effects because the
amplitudes of the stream-wise velocity variations caused by the investigated vortices were quite large (often
about 10% of free-stream speed, as in [6]). Another cause is related to the so-called transient growth of
perturbations occurring in the disturbance-source near-field.

In the long-wavelength region, some serious difficulties exist in application of the local parallelism approx-
imation to the linear stability theory. For instance, in [24,32], the Görtler number of neutral point increases as
the span-wise wave-number decreases below 0.1 (when it is normalized by the boundary-layer displacement
thickness δ∗) and approaches 10 at wave-number about 0.01. Meanwhile, in calculations of [31,55], the same
Görtler number remains small and nearly constant (about 0.7–0.8), while in [20] it continues to decrease at
least down to 0.1.

A great number of subsequent attempts to advance the approximation validity by means of accounting
for the boundary-layer growth did not lead to an adequate solution of the problem. The disturbance growth
rates predicted by various theories still differ significantly from each other and seriously disagree with the
experimental data. Moreover, although according to the linear stability theory [20] the flow becomes unstable
when Görtler number exceeds value of about unity, experimentalists were not able to observe Görtler vortices
until Gö∗ ≈ 10. Here and below, we denote Görtler number Gö∗ when displacement thickness δ∗ is used as
δ: Gö∗ = (Ueδ

∗/ν)
√

δ∗/R. The significant difference between predicted and experimental growth rates is
observed in the whole studied range of span-wise wave-numbers and Görtler numbers.
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Excitation of unsteady Görtler vortices 69

Hall [27,28] showed that the reduction in the problem under consideration to a set of homogeneous
ordinary differential equations is not justified for values of Gö and β of order of unity and lower; the neglect
of the downstream variation of the vortex shape (i.e., consideration of the wall-normal amplitude function as
independent of x and prehistory of its development) is invalid in this case. To account for the prehistory, one
has to formulate the problem as a set of partial differential equations and solve the corresponding parabolic
initial-boundary-value problem. Numerical experiments show that the behavior of stationary vortices at small
Görtler numbers depends significantly on initial conditions and determination of a unique neutral stability
curve loses practical significance [11,29,45]. In such a case, the most accurate approach, which allows tracing
the development of the vortices from the very beginning, consists of formulating and solving the receptivity
problem to provide proper initial conditions. Excitation of steady and unsteady Görtler vortices by free-stream
vortical disturbances has been studied theoretically and numerically in [66] and excitation of steady vortices
induced by a stationary roughness in [3,16]. Experimentally, the receptivity problems on excitation of Görtler
vortices had not been studied quantitatively until recently due to its complexity even for stationary surface
roughness.

Furthermore, the situation in boundary layers is aggravated even at β � 1 by the presence of the so-
called near-field region adjoining a disturbance source, especially downstream of it. This phenomenon is
related to the so-called lift-up effect [52], which allows for the stream-wise disturbance velocity to experience
a transient algebraic (rather than exponential) growth even in a linearly stable flow. In the framework of
the modal approach, this can be illustrated in terms of many attenuating modes of linearized Navier–Stokes
equations with the same value of the span-wise wave-number and frequency (including zero frequency), but
with different stream-wise wave-numbers [63]. The superposition of the nonorthogonal modes produced by
a disturbance source can lead to a complicated behavior (including the transient growth) of the stream-wise
velocity disturbance in an extended downstream area particularly at β ∼ 1 characteristic for the most growing
Görtler vortices. The wall-normal profiles of the stream-wise velocity disturbances often resemble the Görtler
vortex profiles. This renders it difficult to distinguish these two kinds of disturbances in experiment.

The majority of technical problems occurred in previous experimental investigations of stationary Görtler
vortices are associated with a poor accuracy of measurements of low-amplitude velocity perturbations on
the background of large mean shear-flow velocity accompanied by large wall-normal gradients. In addition,
some previous experimental difficulties can be attributed, at least partly, to a possible influence of nonlinearity
and to the mechanism of nonmodal disturbance development discussed above or, in other words, to a large
disturbance-source near-field. Due to these reasons, an accurate (and even satisfactory) agreement between
the experimental growth rates of steady Görtler vortices and those predicted by the linear stability theory has
never been achieved until recently (see below).

Experimental investigations of the linear Görtler instability problem in nonstationary formulation had also
been absent until recently. The number of available theoretical and numerical results on time-periodic vortices
is also very restricted, though the original Görtler equations [24] are time-dependent. The growth of Görtler
instability modes in a form of unsteady, oscillating vortices as a primary state was considered in [27,33] for
subsonic and in [56] for supersonic boundary layers. It has been shown that the unsteady (periodic in time)
modes are less amplified compared to steady ones. This result was obtained in [27] with accounting for the
effects of the base-flow nonparallelism but only in the limit of infinitely large span-wise wave-numbers. The
case of O(1) wave-numbers (being of the greatest practical importance) has not been studied.

The initial-boundary-value problem of the development of nonstationary disturbances in a boundary layer
on a concave wall has been considered by Bertolotti [5]. The study was mainly devoted to the development
of Tollmien–Schlichting (TS) waves; therefore, the Navier–Stokes equations were reduced and normalized
quite differently compared to the initial-boundary-value problem for Görtler vortices formulated in [29].
Nevertheless, it was pointed out that the surface curvature promotes amplification of both the Görtler vortices
and the oblique TSwaves. Their instability regionswere found tomergewith each other as the surface curvature
increases.

Based on flow visualizations and theoretical results, it is believed usually that steady vortices dominate in
the flows in the presence of Görtler instability. This is plausible quite often, but cannot be rigorously justified
for all practical cases. Unsteady vortices can be initiated by low-frequency vortical perturbations of incoming
flows and seem to appear in many practical situations (see, e.g., [53,66]). Such perturbations are typical, for
example, in boundary layers on curved blades of turbo-machines. Consequently, the apparent predominance of
steadyGörtler vortices in numerous experimentsmight be explained, for example, by a stronger boundary-layer
receptivity to these disturbances, or by larger dimensionless amplitudes of surface roughness or free-stream
nonuniformities in comparisonwith amplitudes of surface vibrations or free-streamvelocity fluctuations, rather
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than by their largest amplification rates. Such situation might be similar to the swept-wing boundary-layer
instability, where less amplified stationary disturbances dominate frequently in the flow [22,50].

Recent investigations of unsteady Görtler instability (including the quasisteady case) described in [8,9]
have changed the situation in the Görtler instability field significantly. Due to the application of a new exper-
imental approach and an in-depth theoretical support of the study, a new level of agreement between the
experimental and computed characteristics of the linear Görtler instability was obtained. The novel experi-
mental procedure has allowed the authors to examine very accurately both stationary (in a quasistationary
limit) and essentially nonstationary small-amplitude Görtler vortices. The results obtained in [8,9] provided
a solid basis for further investigations, including a systematic study of excitation mechanisms of unsteady
Görtler vortices by various external disturbances.

The importance of the base-flow receptivity to surface imperfections for the problem of excitation and
development of Görtler vortices had been recognized for a long time [11,29,45]. However, until recently, this
problem had been examined only theoretically and only for a particular case of stationary Görtler vortices
generated by surface roughness [3,16].

First quantitative experimental investigation of the problem of excitation of stationary and nonstationary
Görtelr vortices by stream-wise localized surface nonuniformities (roughness elements and vibrations) had
been performed in [36–38]. The experiments were carried out at controlled disturbance conditions with small
surface nonuniformities when the receptivity coefficients, being defined in Fourier space, were independent of
the particular shapes of the surface imperfections. These definitions of the receptivity coefficients are similar
to those used in several previous studies devoted to the linear receptivity problems describing excitation of
either oblique TSwaves [2,39,40,49,65] or cross-flow (CF) instability modes developing in three-dimensional
boundary layers [21,22] (for review, see also [41]).

However, the experimental results [36–38] need theoretical analysis due to several circumstances. In par-
ticular, it is not clear whether the definitions of the receptivity coefficients used in the experimental works
are applicable for the case of excitation of low-frequency Görtelr vortices, for which the disturbance-source
near-field can be very large and the relative role of continuous-spectrum modes can be more significant com-
pared to the previously studied cases of TS and CF waves. Such kind of theoretical analysis and comparison
of corresponding numerical results with the experimental data are the main goals of the present investigation.

2 Theoretical and numerical models

2.1 Disturbance equations

The controlled disturbances excited in the boundary layer in the experiment [38] have very low amplitudes
(several tenths or even hundredths of a percent of the mean flow velocity). Therefore, we assume that their
generation and propagation downstream from the source are described with a good accuracy by linearized
equations.

Let us consider a slightly concave plate of infinite span placed under zero angle of attack into a uniform
flow of a viscous incompressible fluid with velocity vector of length Ue, which is perpendicular to the plate
leading edge. We assume that the radius R > 0 of the plate curvature is constant and significantly greater
than thickness δ of the boundary layer formed on the plate under the action of viscosity. Let us introduce the
following notations: x ≥ 0 is the stream-wise coordinate (the arc length along the plate surface counted from
the leading edge), y ≥ 0 is the wall-normal coordinate (a distance from the plate surface), z is the span-wise
coordinate (along the leading edge of the plate), which is perpendicular to the (x, y)-plane, and t is the time.
The flow, which has been established over the plate in the absence of any disturbances, we call the base flow.
The velocity component of the base flow in the span-wise direction is equal to zero. The velocity components
U and V in the x- and y-directions, respectively, and the pressure P does not depend on both z and t .

Let the disturbance source be an oscillating impermeable membrane of stream-wise width l extended
infinitely in the z-direction and located downstream of the plate leading edge between coordinates x0 − l and
x0, where x0 � l. Let us denote the velocity components and the pressure of the perturbed flow by u(x, y, z, t),
v(x, y, z, t),w(x, y, z, t) and p(x, y, z, t), respectively.Using the boundary-layer normalization,we scale time
by x0/Ue; x and l by x0; y, z, R and δ by x0/

√
Re; u by Ue; v and w by Ue/

√
Re; p by ρU2

e /Re, where
Re = x0Ue/ν denotes the Reynolds number (which differs from the one used in the experiment description
in Sect. 1), ρ is the fluid density, and ν is the fluid kinematic viscosity. For dimensionless variables, we keep
the same notations.
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Excitation of unsteady Görtler vortices 71

In the considered case, when R � δ, the base flow developed over the plate far from its leading edge
satisfies the Blasius equations [20,46,51]:

U
∂U

∂x
+ V

∂U

∂y
= ∂2U

∂y2
,

∂U

∂x
+ ∂V

∂y
= 0, (1)

with the following no-slip, no-penetration and free-stream boundary conditions:

U (x, 0) = V (x, 0) = 0, U (x,∞) = 1, (2)

where, in accordance with the above scaling, U (x, y) and V (x, y) are the dimensionless stream-wise and
wall-normal velocities.

The system of linear equations, describing the development of small-amplitude Görtler vortices in the
two-dimensional boundary layer, has the following form

∂u′

∂t
+U

∂u′

∂x
+ ∂U

∂x
u′ + V

∂u′

∂y
+ ∂U

∂y
v′ = ∂2u′

∂y2
+ ∂2u′

∂z2
,

∂v′

∂t
+U

∂v′

∂x
+ ∂V

∂x
u′ + V

∂v′

∂y
+ ∂V

∂y
v′ + 2Gö2Uu′ + ∂p′

∂y
= ∂2v′

∂y2
+ ∂2v′

∂z2
,

∂w′

∂t
+U

∂w′

∂x
+ V

∂w′

∂y
+ ∂p′

∂z
= ∂2w′

∂y2
+ ∂2w′

∂z2
,

∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0,

(3)

where u′ = u − U , v′ = v − V , w′ = w, p′ = p − P , and Gö = √
Re/R is the Görtler number. Note that

this Görtler number coincides with the Görtler number Gö introduced in Sect. 1 when the thickness δ of the
boundary layer is defined as

√
x0ν/Ue.

This system is derived from the full Navier–Stokes equations for viscous incompressible fluid using lin-
earization and parabolization in the stream-wise direction by dropping viscous terms and the stream-wise
derivative of the pressure, which are relatively small in the case of large Reynolds numbers [9,28].

We assume that there are no disturbances of the base flow upstream of themembrane, the no-slip and the no-
penetration conditions are satisfied on the plate surface downstream from the membrane, and the disturbances
decay to zero as y → ∞.

The boundary conditions on the membrane surface at 1− l ≤ x ≤ 1 require special consideration. Let the
oscillating membrane undergo instantaneous shifts ξ(x, z, t), η(x, z, t) and ζ(x, z, t) about its neutral position
along x-, y- and z-axis, respectively. Then the no-slip conditions take the form

∂ξ

∂t
= u(x + ξ, η, z + ζ, t),

∂η

∂t
= v(x + ξ, η, z + ζ, t),

∂ζ

∂t
= w(x + ξ, η, z + ζ, t).

Assuming that the displacements and the velocities of points of the membrane surface in the x- and z-directions
are negligible, we expand the flow velocity components in the Taylor series near point (x, 0, z), setting ξ =
ζ = ∂ξ/∂t = ∂ζ/∂t = 0 and discarding the nonlinear (with respect to η) terms. Generally, the procedure
can be misleading as the decision whether the membrane height is small or whether the nonlinear terms are
important is dictated by physics (see, e.g., [13]). In the present case, the quite favorable comparison of the
numerical and experimental results presented in Sect. 3 substantiates the assumption. Taking then into account
that at y = 0, the velocity of the base flow satisfies the equalities U = V = 0 and ∂V /∂y = −∂U/∂x = 0,
we get, finally, the following linearized boundary conditions for the disturbance velocities:

u′(x, 0, z, t) = −∂U

∂y
(x, 0)η,

v′(x, 0, z, t) = ∂η

∂t
,

w′(x, 0, z, t) = 0, 1 − l ≤ x ≤ 1.
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The substantiation of such boundary conditions can be traced to [4] and, hence, they are called sometimes as
Benjamin’s boundary conditions. They arewidely used, in particular, in studying various shear-flow instabilities
near compliant coatings [23,34,67] and other surface nonuniformities in both parallel and nonparallel flows
[44,60].

We assume that the membrane oscillation is harmonic on z and t , i.e.,

η(x, z, t) = realHβω(x)ei(βz−ωt),

where β �= 0 and ω ≥ 0 are the real span-wise wave-number and angular frequency, respectively, and Hβω(x)
is a scalar nonnegative function which is identically equal to zero at x ≤ 1 − l and x ≥ 1 and depends, in
general, on β and ω. In this case, the solution of system (3) can be found in the following form

⎛
⎜⎝

u′(x, y, z, t)
v′(x, y, z, t)
w′(x, y, z, t)
p′(x, y, z, t)

⎞
⎟⎠ = real

⎛
⎜⎝

ū(x, y)
v̄(x, y)
w̄(x, y)
p̄(x, y)

⎞
⎟⎠ ei(βz−ωt). (4)

Then the system (3) is reduced to a system of equations for the complex amplitudes of disturbances and, by
using the continuity equation of the base flow, can be rewritten in the following form

∂ ū

∂x
+ ∂v̄

∂y
+ iβw̄ = 0,

∂(U v̄ + V ū)

∂x
+ 2

∂V v̄

∂y
+ iβV w̄ + 2Gö2Uū + ∂ p̄

∂y
= ∂2v̄

∂y2
− β2v̄ + iωv̄,

∂U w̄

∂x
+ ∂V w̄

∂y
+ iβ p̄ = ∂2w̄

∂y2
− β2w̄ + iωw̄,

V
∂ ū

∂y
− ∂V

∂y
ū + ∂U

∂y
v̄ −U

∂v̄

∂y
− iβU w̄ = ∂2ū

∂y2
− β2ū + iωū.

(5)

Note that the form of the stream-wise momentum equation [the last equation in (5)] differs from the
conventional one, cf., e.g., eq. (3) in [9]. It was obtained by applying the continuity equations for the base
flow and disturbances to remove x-derivatives in the stream-wise momentum equation. This modification of
the original system is essential for their efficient numerical analysis presented below.

The initial conditions for the system (5) and the boundary conditions at y = ∞ have the form

ū(1 − l, y) = v̄(1 − l, y) = w̄(1 − l, y) = 0 (6)

and
ū(x,∞) = v̄(x, ∞) = w̄(x, ∞) = 0, x ≥ 1 − l, (7)

respectively, and the boundary conditions at y = 0 have the form

ū(x, 0) = −∂U

∂y
(x, 0)Hβω(x),

v̄(x, 0) = −iωHβω(x),

w̄(x, 0) = 0, 1 − l ≤ x ≤ 1,

(8)

and

ū(x, 0) = v̄(x, 0) = w̄(x, 0) = 0, x > 1.

Note that the model (5)–(8) is justifiable at large Reynolds numbers: Re � 1/Hmax, where

Hmax = max Hβω(x),

at small amplitudes of oscillations relative to the boundary-layer thickness: Hmax  δ, and at the boundary-
layer thickness much smaller than the characteristic stream-wise wavelength of the vortex [4]. All these
conditions are satisfied in the present study.
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Table 1 Magnitudes hmax of membranes’ oscillations (µm)

λz , mm f = 2 5 8 11 14 Hz

8 30.0 ± 2.0 36.0 ± 2.2 45.0 ± 2.0 48.1 ± 3.7
12 27.6 ± 0.3 30.9 ± 0.6 37.8 ± 0.5 47.2 ± 1.0 51.7 ± 2.3

The kinetic energy of the disturbances (4) per unit area in the (x, z)-plane and the entire thickness of the
boundary layer, averaged over time and span-wise coordinate, with the used normalization are proportional to

lim
T→∞ lim

Z→∞
1

4ZT

T∫

−T

Z∫

−Z

∞∫

0

(
u′(x, y, z, t)2 + v′(x, y, z, t)2

Re
+ w′(x, y, z, t)2

Re

)
dydzdt (9)

and, as it is easy to see, are proportional to

∞∫

0

(
|ū(x, y)|2 + |v̄(x, y)|2

Re
+ |w̄(x, y)|2

Re

)
dy.

For the sake of brevity, we will further call this function of x the energy of the solution of system (5).

2.2 The source

In the experiment of [38], the disturbance source consisted of many round membranes of diameter d ranged
in the span-wise direction and oscillating pairwise opposite in phase. They simulated span-wise-periodic
surface nonuniformities, which generate in the boundary layer some vortical disturbances with the span-wise
wavelength of λz .

The membranes oscillated with frequencies f = 2, 5, 8, 11 and 14 Hz. Their maximum periodic deflec-
tions hmax were less than 52 µm in all cases (see Table 1). The dimensionless shapes of oscillations over the
membrane surface turned out to be the same (within accuracy of the measurements) at all frequencies under
study, while the phases of oscillations turned out to be constant. These observations mean that the instan-
taneous dimensionless shapes of the membranes’ deflections are the same at any instant and correspond to
quasistationary displacements.

Hence, for the theoretical description, it turned to be possible to consider the problem of the membrane
deflection in the static formulation. For this problem, at ε  d and hmax/ε � 0.2 (where ε is the membrane
thickness), the approximation of the classical theory of small bending of thin plates is valid. In practice,
this approach is used sometimes even up to hmax/ε ≈ 1 [17]. Preliminary estimates performed by means of
approximations of themeasured shape ofmembrane oscillations by analytical solutions given by the theory have
shown that the in-plane tension term plays a negligibly weak role at these particular experimental conditions.
Neglecting the in-plane tension of the membrane, the problem has an analytical solution (see, e.g., [61,
Chapter III, §16]), which has the following form (in the cylindrical system of coordinates related to the point
of symmetry of a membrane)

h(r) = hmax

[
1 −

(
2r

d

)2
]2

. (10)

Here r is the current distance from the membrane center. To describe better the experimentally observed shape
of oscillations, one can use an infinite series of (2r/d)2n (see [61, Chapter XIII, §98]). The formula (10) can
be interpreted as the truncation of the series at n = 2. Taking into account the first four terms of such an
expansion, one can get the formula

h(r) = hmax

3∑
n=0

cn

(
2r

d

)2n

, |r | ≤ d/2, (11)
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where

3∑
n=0

cn =
3∑

n=1

ncn = 0,

which is in a very good agreement with themeasurements for the two usedmembrane types. The corresponding
independent coefficients of (11) are: c2 = 1.9375, −0.3101 and c3 = −0.4591, 0.6534 for the membranes
with span-wise periods λz = 8 and 12 mm, respectively.

Assuming the number of the membranes infinite, the span-wise wave-number spectra of both the surface
nonuniformities and the vortices are discrete and consist predominantly of a pair of harmonics with wave-
numbers β±n = ±2nπ/λz , where n is positive integer. In all regimes, the amplitudes of first harmonics (n = 1)
were about 5 times higher than the amplitudes of second ones (n = 2) and more than 20 times higher than the
amplitudes of other harmonics. Note that as the phase of oscillation of every membrane is constant over its
surface, it is possible to provide the real-valued amplitudes hβ of the membrane oscillations at the span-wise
wave-number β = β±1 by choosing the initial time instant.

Accordingly, for the disturbance equations described in Sect. 2.1, we will assume

Hβω(x) = hβ

(
x − 1 + l/2

l
d

)
, 1 − l ≤ x ≤ 1.

2.3 Numerical model

To discretize the system (5) with the initial conditions (6) and boundary conditions (7) and (8), we use the
method of collocations in y-direction. Let us take a sufficiently large ymax >> δ and replace the boundary
conditions (7) by

ū(x, ymax) = v̄(x, ymax) = w̄(x, ymax) = 0, x > 1 − l.

The adequacy of the choice of ymax will be analyzed a posteriori by the independence (within the specified
accuracy) of the obtained results, as ymax is increased.

Let us make the following change of variables in eqs (5)

y = y(s) = ymax
1 + s

2 + (1 − s)σ
, −1 ≤ s ≤ 1, (12)

where σ > 0 is the scaling factor, and replace p̄, ū, v̄, and w̄ by interpolation polynomials using the nodes

s j = cos
π j

N + 1
, j = 1, . . . , N , (13)

to interpolate the pressure in s and the same points and s0 = 1 and sN+1 = −1 to interpolate the velocity
components. Requiring fulfillment of the obtained equations at points (13), and using the methods described in
[64] for computing the derivatives of the interpolation polynomials, we come to a systemof ordinary differential
and algebraic equations of the form

v(1 − l) = 0,
d

dx
D(x)v = J (x)v + Gp + H(x) fv(x), F(x)v + H(x) f p(x) = 0, (14)

with a scalar function H(x) = Hβω(x) such that

H(1 − l) = H(x) ≡ 0, x ≥ 1. (15)

where v(x) ∈ Cnv and p(x) ∈ Cn p are the vectors of values of the velocity components and pressure,
respectively, at the internal nodes of the grid, J (x) ∈ Cnv×nv and F(x) ∈ Cn p×nv are matrices, and fv(x) ∈
Cnv , f p(x) ∈ Cn p are vectors dependent smoothly on x , nv = 3N , n p = N , and G ∈ Cnv×n p is a matrix that
is independent of x .

Note that the first equality in (14) represents the initial condition (6), the second one approximates the first
three equations in (5), and the third one approximates the forth equation in (5). The boundary conditions (8)
are represented by the terms H(x) fv(x) and H(x) f p(x).
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Taking into account that l  1 (due to assumption x0 � l in Sect. 2.1), we consider further the base flow
to be constant in the range of 1 − l ≤ x ≤ 1, assuming

D(x) ≡ D(1), J (x) ≡ J (1), F(x) ≡ F(1),

fv(x) ≡ fv(1), f p(x) ≡ f p(1), 1 − l ≤ x ≤ 1. (16)

For the system of differential-algebraic equations (14), which is a discrete version of system (5), the energy
of the solution is

E(v(x)) = (Ev(x), v(x)) ,

where (., .) means the complex Euclidean scalar product,

E = diag(K , K/Re, K/Re),

K is a diagonal matrix of the Gauss–Lobatto quadrature weights [12] multiplied by the values of Jacobian of
the transformation (12) at nodes (13).

The matrices D(x), J (x) and F(x) include the base-flow velocities U and V and their derivatives with
respect to y at grid nodes y(s j ). We computeU (x, y(s j )) and V (x, y(s j )) for x = 1 and then use these values
as initial conditions for computing U and V at the grid nodes for x > 1 by the delaying coefficients method
and the Crank–Nicolson scheme [58].

For computing U (1, y(s j )) and V (1, y(s j )), we need to solve the system (1), (2). Its solution can be
represented in the self-similar form [51]:

U = dg

dr
, V = 1

2
√
x

(rU − g) ,

where g is a function of the similarity variable r = y/
√
x , which satisfies the equation

2
d3g

dr3
+ g

d2g

dr2
= 0

with the boundary conditions

g(0) = dg

dr
(0) = 0,

dg

dr
(∞) = 1.

For computing g at the nodes r j = y(s j ), we use the method described in detail in [42,54].
Applying an algebraic dimension reduction proposed in [10,47] to the differential-algebraic initial-value

problem (14)–(16) with the matrices and right-hand side, smoothly dependent on x , one can show that the
following conditions

detD(x) �= 0, detF(x)D(x)−1G �= 0 (17)

guaranty the existence and uniqueness of the solution and make it possible to eliminate p in (14). Taking this
into account, we will consider separately the generation of disturbances by solving the initial-value problem

v(1 − l) = 0,
d

dx
D(1)v = J (1)v + Gp + H(x) fv(1),

F(1)v + H(x) f p(1) = 0, 1 − l < x ≤ 1, (18)

and the downstream propagation of disturbances v0 = v(1) generated by (18), solving the initial-value problem

v(1) = v0,
d

dx
D(x)v = J (x)v + Gp, F(x)v = 0, x > 1. (19)

For approximating these initial-value problems in x , we will use the BDF2 method [26] with fixed grid steps.
In addition, we will use the adjoint initial-value problem

ṽ(1) = ṽ0, −D(1)∗ dṽ
dx

= J (1)∗ṽ + F(1)∗ p̃, G∗ṽ = 0, 1 > x ≥ 1 − l,
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where I is the identity matrix of order nv and ∗ denotes the conjugate transposition. The adjoint problem is
solved backwards in x with a given initial vector ṽ0 satisfying G∗ṽ0 = 0. One can prove that the solution of
(18) satisfies the equality

(D(1)v(1), ṽ0) =
1∫

1−l

Hc(x)
∗H(x)dx,

where

Hc(x) = (ṽ(x), fv(1)) + ( p̃(x), f p(1)).

Choosing the initial vector for the adjoint problem as

ṽ0 = [
I − G(YG)−1Y

]∗
D(1)−∗u,

where Y = F(1)D(1)−1 and u is a given arbitrary nv-component vector, we obtain

(v(1), u) = (D(1)v(1), ṽ0) =
1∫

1−l

Hc(x)
∗H(x)dx .

The function Hc(x) will be referred to as the adjoint source amplitude corresponding to u.
Any solution v(x) of the initial-value problem (19) can be represented in the following form:

v(x) = S(x)v0,

where S(x) ∈ Cnv×nv is a matrix of fundamental solutions. Since v0 = S(1)v0 for any vector v0, satisfying
the condition F(1)v0 = 0, the matrix S(1) has to be a projector onto ker F(1). For instance, we can choose
S(1) = Q, where

Q = I − F(1)∗(F(1)F(1)∗)−1F(1)

is the orthogonal projector onto ker F(1). If S(1) is fixed, then matrix S(x) is unique and can be obtained
column-by-column by solving the initial-value problem (19) with the initial vectors v0 equal to columns of
S(1).

The computations to be described belowwere performed for the following values of parameters: ymax = 30,
σ = 11, the number N = 50 of grid points in y-direction, the number of grid points on the source in x-direction
and from x = 1 to x = 4.4 was chosen to be 2000 and 500, respectively. Reducing the steps of grids and
increasing ymax did not lead to any visible changes in the results. The parameters of computations are given in
Tables 2 and 3.

Table 2 Parameters of computations for the membrane with λz = 8 mm (� = 152)

f , Hz 5 8 11 14

Hmax 0.0421 0.0507 0.0632 0.0677
Gö 3.6278 3.6332 3.6288 3.6308
β 0.5217 0.5202 0.5214 0.5209
ω 0.9257 1.4812 2.0366 2.5921
Re × 10−5 1.6583 1.6682 1.6601 1.6638
l 0.0135 0.0135 0.0135 0.0135
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Table 3 Parameters of computations for the membrane with λz = 12 mm (� = 280)

f , Hz 2 5 8 11 14

Hmax 0.0426 0.0478 0.0584 0.0730 0.0800
Gö 3.6427 3.6430 3.6430 3.6429 3.6428
β 0.3472 0.3472 0.3472 0.3472 0.3472
ω 0.3715 0.9288 1.4861 2.0433 2.6006
Re × 10−5 1.6747 1.6752 1.6752 1.6751 1.6749
l 0.0200 0.0200 0.0200 0.0200 0.0200

3 Spectral content of Görtler vortices and the receptivity coefficients

The receptivity coefficient can be defined by analogy with the case of TS wave excitation as a constant Cλz , f
which is independent of the source amplitude and which gives an approximation of the following form for a
disturbance generated by a source located at x = 1:

v(x) ≈ Cλz , f vm(x)

∞∫

−∞
H(ξ + 1)e−iαmr ξdξ, x � 1, (20)

where vm(x) is the solution of the initial-value problem (19) with v0 being the leading local mode at x = 1,
and αmr is the real part of eigenvalue corresponding to v0. This approximation is based on the observation that
to obtain the downstream propagation of a disturbance with account of a nonparallelism of the boundary-layer
streamlines, it is necessary to solve the initial-value problem (19), as, for example, in [15], rather than to use
the so-called N -factor approach based on pure local analysis. The right-hand side of (20) at x = 1 can be
treated as the initial amplitude generated due to a resonance effect.

The receptivity coefficientCλz , f can be estimated using (20) and data on the complete disturbance velocity
v(x) obtained numerically or experimentallywith a specific source.However, in this case, there is no confidence
that it is independent of the amplitude H(x) of the source.

In this section, we propose and justify an approach for finding approximations of type (20) with the
receptivity coefficients, which can be estimated independently of the source amplitude. The most obvious way
to obtain such an approximation is based on the adjoint function corresponding to the leading local mode.
However, as we show below, in the case of Görtler vortices, this approach gives a wrong value of the receptivity
coefficient due to the nonparallelism of the boundary-layer streamlines.

We propose to solve the above problem by using the so-called optimal disturbances. Despite the fact that
near the disturbance source and over the majority of the stream-wise region the optimal disturbance is a tiny
fraction of the roughness-induced disturbance hardly observable in a laboratory experiment, it can be a useful
numerical tool when it is combined with the adjoint-function approach. In particular, it is shown that the
extracted optimal parts of the initial disturbances under consideration make it possible to explain their far-field
linear propagation and to define physically meaningful coefficients of the boundary-layer receptivity to surface
nonuniformities at excitation of Görtler vortices.

3.1 The receptivity coefficients via optimal disturbances

Let us consider the stream-wise development of disturbances from the point x = 1 by solving the initial-value
problem (19). Let xo > 1 denote a point at which the disturbances are observed.

A solution v(x) = vopt(x) of the initial-value problem (19) with the unitary energy at x = 1 is called the
optimal disturbance, if

E(vopt(xo)) = max {E(S(xo)u) : E(u) = 1, F(1)u = 0} ,

where S(x) is the matrix of fundamental solutions introduced in Sect. 2.3. Among all solutions of the initial-
value problem with the unitary energy at x = 1, such a solution has a maximum energy at x = xo.

The optimal disturbance vopt(x) can be computed solving the initial-value problem (19) with the initial
value v0 = E−1/2η, where η is a normalized right singular vector of the matrix

E1/2S(xo)E
−1/2P
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Fig. 1 Wall-normal profiles of magnitudes of three velocity components at x = 1 for three optimal disturbances with xo = 3
(solid lines), 4.5 (dashed lines) and 6 (dotted lines), (left), and those for the leading local mode (right) in the cases of λz = 8 mm
and f = 8 Hz

corresponding to its maximum singular value, and P is the orthogonal projector onto ker F(1)E−1/2. The
matrix S(xo), required to form the above matrix, can be computed as described in Sect. 2.3. The maximum
singular value in the present case is simple. Therefore, the corresponding normalized right singular vector η is
unique up to a multiplicative constant of unitary magnitude. Hence, the optimal disturbance is unique up to a
multiplicative constant of unitary magnitude as well. To obtain the complete uniqueness, we normalize vopt(x)
to make the stream-wise velocity component of vopt(1) positive at the point of its maximum magnitude in the
wall-normal profile.

Figure 1 (left) shows magnitudes of three velocity components of the optimal disturbance at x = 1 for
three different values of xo. The data are presented for the case of λz = 8 mm and f = 8 Hz, the results
obtained for other values of λz and f being quite similar. It is seen that the velocities have quite smooth
wall-normal profiles and weakly depend on xo. Note that the wall-normal and span-wise velocities have an
additional scaling, being multiplied by

√
Re ≈ 408 (see Tables 2, 3), in contrast to the stream-wise velocity.

Thus, both the scaled and the dimensional stream-wise velocities are significantly smaller than the others are.
Hence, similarly to optimal disturbances in channels and flat-plate boundary layer (see, e.g., review in [7]), the
optimal disturbances in the concave plate boundary layer can be interpreted as a system of counter-rotating
stream-wise vortices, evolving downstream, however, into the Görtler vortices rather than into stream-wise
streaks.
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Fig. 2 Comparison of stream-wise distributions of energy of total disturbance (solid lines), its optimal part (dotted lines) and its
modal part (dashed lines) and an estimated energy growth (dash-dotted lines) using (32) for various frequencies and λz = 8 mm

Let us represent any solution v(x) of problem (19) as

v(x) = κvopt(x) + vr (x), (21)

choosing κ = (Ev(1), vopt(1)) to provide (Evr (1), vopt(1)) = 0. By definition, vopt(x) and vr (x) are mutually
E-orthogonal at x = 1, and as one can prove, at x = xo. Therefore,

E(v(x)) = E(κvopt(x)) + E(vr (x)), x = 1, xo.

The stream-wise distributions of energy of both the total disturbance v(x) and its optimal part (i.e., the first
term in (21)) are shown in Figs. 2 and 3 for various values of frequency f at λz = 8 and 12 mm, respectively.
It is observed that the optimal part κvopt(x) of the total disturbance v(x) is relatively small at x = 1, i.e., v(1)
and vopt(1) are almost orthogonal. However, when x � 1 the remainder vr (x) becomes negligible and

v(x) ≈ κvopt(x), x � 1, (22)

i.e., v(x) and vopt(x) at x � 1 are almost collinear. Thus, despite the disturbance generated in the vicinity of
the surface nonuniformities is far from κvopt(x), it is its optimal part that forms a corresponding Görtler vortex
at x � 1. In the other words, when the surface nonuniformities generate disturbances, solely their optimal
parts transform to observable disturbances at x � 1. The remainders vanish at x � 1. Thus, the efficiency of
source can be estimated by the ratio E(κvopt(1))/E(v(1)). If this ratio equals to 1, i.e., the source generates
only optimal disturbances, it is the most efficient. The source used in the considered experiment, as presumably
any surface nonuniformity, is not too efficient at excitation of the disturbances in shear flows.

The coefficient κ in (22) can be represented as

κ =
1∫

1−l

Ho(ξ)∗H(ξ)dξ, (23)

where Ho(x) is the adjoint source amplitude corresponding to Evopt(1).
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Fig. 3 Comparison of stream-wise distributions of energy of total disturbance (solid lines), its optimal part (dotted lines) and its
modal part (dashed lines) and an estimated energy growth (dash-dotted lines) using (32) for various frequencies and λz = 12 mm

It appeared that the magnitudes |Ho(x)| and phases arg(Ho(x)) of the adjoint source amplitudes Ho(x)
for all cases considered in the paper are almost constant along the stream-wise coordinate. This enables us to
replace formula (23) by the approximate one

κ ≈ κ̂ = Ho(1 − l/2)∗
1∫

1−l

H(ξ)dξ. (24)

A direct computation showed that the resulting relative error |κ̂ − κ|/|κ| for all considered values of λz and f
is not larger than 1.3 · 10−3.

Function Co
λz , f

= Ho(1 − l/2)∗ can be regarded as the coefficient of receptivity of the boundary layer
over a concave wall to surface nonuniformities at excitation of the Görtler vortices. On computing the optimal
disturbance vopt(x) and the receptivity coefficient, we can find immediately (by means of formulae (22), (24))
an approximate value of the disturbance amplitude generated by the source as
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Fig. 4 Magnitudes (top) and phases (bottom) of receptivity coefficients Co
λz , f

for λz = 8 (dashed lines) and 12 mm (solid lines)

v(x) ≈ Co
λz , f vopt(x)

1∫

1−l

H(ξ)dξ, x � 1, (25)

for any particular amplitude H(x) of the source.
The magnitudes |Co

λz , f
| and the phases arg(Co

λz , f
) of the computed receptivity coefficients Co

λz , f
are

presented in Fig. 4 versus the disturbance frequency for two values of the span-wise wavelength λz . It is seen
that both the receptivity magnitudes and phases increase, in general, with λz and f (excluding receptivity
phases at frequencies below 5 Hz).

Note that all computations with the optimal disturbances are very stable numerically because they are
based on the singular value decomposition, which is one of the most precise procedures of the matrix analysis.
Particularly, we compute Co

λz , f
with a relative accuracy higher than 10−10 and the almost orthogonality of the

total and optimal disturbances is not an obstacle in the present numerical approach.

3.2 Modal approach

Let us consider now the generalized eigenvalue problem

iαD(1)χ = J (1)χ + Gμ, F(1)χ = 0,

corresponding to the initial-value problems (18) and (19) at x = 1. Here α is an eigenvalue and χ is the velocity
part of corresponding eigenvector. Since we are interested further only in the velocity parts of eigenvectors,
we will use for simplicity the term ‘eigenvector’ for χ .

Let us denote the eigenvalue with the minimal imaginary part by αm and some corresponding eigenvector
by v0m . In the considered case, the eigenvalue αm is simple, and therefore, the above eigenvector is unique up
to a multiplicative constant. Let us now choose this constant such that E(v0m) = 1 and the stream-wise velocity
of v0m is positive at the point of its maximum magnitude in the wall-normal profile. The eigenvector v0m will
be referred to as the leading local mode of the initial-value problems (18) and (19) at x = 1.

Figure 1 (right) shows magnitudes of three velocity components of the leading local mode at x = 1. Their
scaling is the same as in Fig. 1 (left). It is seen that all components have smooth wall-normal profiles, and in
contrast to the dimensional stream-wise velocity of the optimal disturbance, the corresponding velocity of the
leading local mode is significantly larger than two other dimensional velocities.

Denote by ṽ0m the eigenvector of the adjoint generalized eigenvalue problem

−iαD(1)∗χ̃ = J (1)∗χ̃ + F(1)∗μ̃, G∗χ̃ = 0,

corresponding to the eigenvalue α∗
m and normalized such that (D(1)v0m, ṽ0m) = 1. The eigenvector ṽ0m will be

referred to as the adjoint leading local mode of the initial-value problems (18) and (19) at x = 1.
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The initial vector of the initial-value problem (19) can be represented as

v0 = ρv0m + v0rm, (26)

where ρ = (D(1)v0, ṽ0m), and therefore, (D(1)v0rm, ṽ0m) = 0. The coefficient ρ in (26) can be represented as

ρ =
1∫

1−l

Hm(ξ)∗H(ξ)dξ, (27)

where Hm(x) means the adjoint source amplitude corresponding to D(1)∗ṽ0m .
Similar to the case of the adjoint source amplitude Ho(x), the values of Hm(x) appeared to be almost

constant. This enables us to replace again formula (27) by the approximate one

ρ ≈ ρ̂ = Hm(1 − l/2)∗
1∫

1−l

H(ξ)dξ.

A direct computation shows that the resulting relative error |ρ̂ − ρ|/|ρ| for all considered values of λz and f
is not larger than 9.2 · 10−5.

By virtue of (26), the solution of the initial-value problem (19) can be represented as

v(x) = ρvm(x) + vrm(x), (28)

where v∗(x) = S(x)v(0)∗ (‘∗’ means ‘m’ or ‘mr ’) is the solution of the initial-value problem (19) with the
initial vector v0 = v0∗ . It would seem that for x � 1 the first term in the right-hand side of (28) coincides
with a good accuracy with v(x). However, this is not quite so. This point is illustrated in Figs. 2 and 3 where
the contribution of the leading mode, i.e., E(ρvm(x)) is shown (dashed lines) alongside with the energy of
the total disturbance (solid lines) and its optimal part (dotted lines). While apparently, the growth rates (i.e.,
tangents of the growth curves) of the modal and optimal parts approach the growth rate of the total disturbance
concurrently, there is a significant gap at low frequencies between the total disturbance and its modal part in
the point of observation. It turns out that this difference can be almost completely eliminated by multiplying
ρvm(x) by a scalar factor Tλz , f . In the capacity of such factor, we can use, for example, a ratio of absolute
values of the stream-wise velocity of the total disturbance (taken in the observation point x = xo at amplitude
maximum in the wall-normal profiles) and the corresponding modal part.

By analogy with the previous section, the value of Cm
λz , f

= Tλz , f Hm(1 − l/2)∗ can be interpreted as a
receptivity coefficient of the boundary layer over the concave plate to surface nonuniformities at excitation
of Görtler vortices. Computing the leading mode vm(x) and the receptivity coefficient Cm

λz , f
, we can find an

approximate value of disturbance v(x) generated by the source by means of the formula

v(x) ≈ Cm
λz , f vm(x)

1∫

1−l

H(ξ)dξ, x � 1, (29)

which is similar to formula (25).
In contrast to the receptivity coefficient Co

λz , f
, the modal receptivity coefficient Cm

λz , f
does not depend

only on the adjoint source amplitude, but includes a correction factor Tλz , f , for the computation of which one
needs to know the value of the total disturbance v(x) at the point of observation that would seem that formula
(29) is useless. However, this is not so.

In the decomposition

vm(x) = πvopt(x) + vro(x), π = (Evm(1), vopt(1)),

it appears that the first term dominates at x � 1. Thus, by virtue of equations (25) and (29), the modal
receptivity coefficient Cm

λz , f
can be computed by the formula

Cm
λz , f ≈ Co

λz , f /π, (30)

which is independent of the value of the total disturbance v(x) at the point of observation.
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Fig. 5 Magnitudes (top) and phases (bottom) of modal receptivity coefficients Cm
λz , f

, computed by formula (30) for λz = 8
(dashed lines) and 12 mm (solid lines)

Hence, computing the function vm(x) and the modal receptivity coefficient Cm
λz , f

by formula (30), we
immediately find an approximate value of the disturbance v(x) generated with a particular source character-
ized by H(x) by formula (29).

Figure 5 shows that the magnitude |Cm
λz , f

| and the phase arg(Cm
λz , f

) of the modal receptivity coefficient
Cm

λz , f
increase with the λz and f (excluding receptivity phases at frequencies below 5 Hz).

3.3 Comparison of numerically and experimentally obtained receptivity coefficients

To compare the modal receptivity coefficients with experimental ones, let us define the latter in terms of the
previous sections with account of procedure used in experimental works [36–38] and a great number of pre-
vious investigations (see, e.g., a review in [41] ). In a general case of fixed base-flow characteristics, model
geometry, λz and f , the complex-valued receptivity coefficient is defied as the ratio

Gλz , f = Bλz , f

Wλz , f
(31)

of two values: the complex-valued amplitude Bλz , f of the excited boundary-layer instability mode at the loca-
tion of the source and the complex-valued amplitude Wλz , f of surface vibrations, which is the resonant one
to the instability mode. In other words, for our case the resonant spectrum of surface vibrations is defined as
the components of the three-dimensional frequency–wave-number spectrum of vibrations selected only for
the stream-wise wave-numbers yielded by the dispersion relation for the nonstationary Görtler vortices of the
leading discrete spectrum mode.

The magnitude |Gλz , f | of the receptivity coefficient Gλz , f describes the efficiency of production of the
Görtler vortices by surface nonuniformities. The phase arg(Gλz , f )defines the phase delay between the displace-
ment of the surface during oscillations and the stream-wise-velocity oscillations within the excited vortices.
The disturbance source simulates the span-wise-periodic surface nonuniformities, which lead to the production
of an unstable disturbance with a span-wise wavelength of λz in the boundary layer. As a result, the spectrum
of the simulated nonuniformities and the spectrum of the boundary-layer perturbations are both discrete over
the span-wise wave-number β, and for the system of oscillating Görtler vortices produced in the flow, those
spectra consist predominantly of a pair of harmonics with wave-numbers ±β1. It is for those wave-numbers
the values of the receptivity coefficients are obtained in the present study.

Following the above procedure and assuming that the source is located at x = 1, we have

Wλz , f = 1

γ

∞∫

−∞
H(ξ + 1)e−iαmr ξdξ,
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where αmr denotes the real part of eigenvalue αm corresponding to the leading local mode vm(1) = v
(0)
m defined

in the previous section, the constant γ = 0.00725 provides a normalization of the source amplitude applied
in experimental works [36–38], and

Bλz , f = cūm(1),

where ūm(x)means the stream-wise velocity of the leading mode vm(x) at a wall-normal distance correspond-
ing to U/Ue = 0.6 and the complex coefficient c is a solution of the least square problem:

p∑
j=1

∣∣cūm(x j ) − ū(x j )
∣∣2 → min,

where ū(x) means the stream-wise velocity of the disturbance v(x) at a wall-normal distance corresponding
to U/Ue = 0.6 and x1, . . . , xp denote points in x- direction where this disturbance velocity is measured.

Using (29), the constant c can be estimated as

c ≈ Cm
λz , f

1∫

1−l

H(ξ)dξ.

The computations indicate that if 0 ≤ f ≤ 14 Hz, then 0 ≤ αmr ≤ 3.51 and 0 ≤ αmr ≤ 3.58 for λz = 8 mm
and 12mm, respectively. Therefore, αmrl  1 (see Tables 2, 3 for corresponding values of l). As H(ξ +1) = 0
when ξ ≤ −l or ξ ≥ 0, it follows that

Wλz , f ≈ 1

γ

1∫

1−l

H(ξ)dξ.

Thus, the receptivity coefficient Gλz , f can be estimated theoretically via the modal receptivity coefficient
Cm

λz , f
with the formula

Gλz , f ≈ γCm
λz , f ūm(1).

Shown in Fig. 6 is the comparison of experimental (black symbols) and theoretical (open symbols and
lines) distributions of the receptivity coefficients versus frequency f obtained for the span-wise wavelengths
λz = 8 and 12 mm. In addition, an extrapolation of the experimentally obtained coefficients to zero frequency
using the technique of [37] is marked by crosses. It is seen that the values of the receptivity coefficients, the
character and rate of their growth with frequency, as well as the dependence on the span-wise wavelength, are

Fig. 6 Comparison of experimental (closed symbols) and computed (open symbols, lines) receptivity coefficients versus frequency
for span-wise wavelengths λz = 8 mm (open circle, filled circle, dashed lines) and 12 mm (open diamond, filled diamond, solid
lines). Additionally, extrapolation of experimental data to zero frequency is shown forλz = 8mm (+) and 12mm (×), respectively
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practically the same in the experimental and model cases, although the quantitative values of the receptivity
amplitudes and phases are somewhat different. However, taking into account the great complexity of the proce-
dures of determination of these coefficients in both the theory and the experiment (including the extrapolation
of amplitudes and phases of measured disturbances to the disturbance-source position), the agreement of the
calculated and measured receptivity coefficients can be regarded as a satisfactory one.

It is seen that at zero frequency, the change of λz (in both the theory and the experiment) affects the
receptivity amplitudes very weakly, while at high frequencies the efficiency of excitation of Görtler vortices
depends significantly on the span-wise scale. The receptivity phases depend rather weakly on the disturbance
frequency and increase slightly with it. Thus, although the traveling linear Görtler vortices grow weaker than
the stationary ones [8,9], their presence can affect the laminar-turbulent transition quite substantially due to
the much higher flow receptivity to localized boundary oscillations.

Note that in a flow, in which the nonparallelism of the base-flow streamlines does not affect or affect only
slightly the stability characteristics, as, for example, in the case of excitation of two-dimensional TS waves
in plane channel flow or Blasius boundary layer, it is possible to obtain a good approximation of downstream
growth of disturbance amplitude by integrating the imaginary parts of local stream-wise wave-numbers αi(x).
Thus, residing completely in the framework of local stability analysis:

A(x) = ρ(xo) exp

(∫ xo

x
αi(x)dx

)
,

where ρ(xo) is, for example, the projection of the total disturbance v(xo) to the leading local mode at x = xo.
The projection can be found based on the adjoint leading local mode at x = xo in the similar way as the value
ρ in (26) was found at x = 1. This provides an approach to estimate Bλz , f in (31) as A(1). This procedure
works very well for the above-mentioned flows.

The corresponding growth curves with xo = 4.5 are shown in Figs. 2 and 3 by dash-dotted lines, where

E = EN (x) = E(v(xo))

( |A(x)|
|A(xo)|

)2

= E(v(xo)) exp

(
2

∫ xo

x
αi(x)dx

)
. (32)

As seen, in contrast to the solutions of the initial-value problems, the slopes of dash-dotted curves far from
the source do not generally follow the slopes of the total disturbances, eventually because the local analysis
does not take into account the nonlocal effects captured by the parabolic equations. The other curves shown in
Figs. 2 and 3 essentially either coincide or are parallel to each other at about x = 4.4. This is supported by the
data obtained for different values of xo. For example, Tables 4 and 5 show the values EN (1) and E(κvopt(1)),
respectively, for xo = 4.5 and 6.0. As seen, the values of E(κvopt(1)) differ less than 5% in all cases under
consideration. Thus, the optimal disturbances (and consequently the corrected modal parts of the total dis-
turbances) are able to provide the receptivity coefficients practically independent of xo. On the contrary, the
observed differences in values of EN (1) are much larger. Thus, the receptivity coefficients derived from the
local stability analysis significantly depend on xo. However, the values of EN (1) show the same relative trends
with frequency and wavelength as E(κvopt(1)) and, hence, can be used in some ‘quick-and-dirty’ estimations
of the receptivity coefficients.

Table 4 Values of EN (1) · 108 for two different values of xo

λz , mm f , Hz 2 5 8 11 14

8 xo = 4.5 – 0.26449 0.48602 1.6737 4.5363
xo = 6.0 – 0.17523 0.61860 2.8218 7.8110

12 xo = 4.5 0.36325 0.73936 2.1859 7.4221 21.653
xo = 6.0 0.34259 0.74693 2.4825 10.016 38.554

Table 5 Values of E(κvopt(1)) · 1011 for two different values of xo

λz , mm f , Hz 2 5 8 11 14

8 xo = 4.5 – 0.43274 0.84795 1.6516 2.1636
xo = 6.0 – 0.42915 0.83726 1.6141 2.0633

12 xo = 4.5 1.4283 2.3070 4.5426 8.7517 11.924
xo = 6.0 1.4170 2.2800 4.4573 8.4972 11.402
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4 Conclusions

The linear roughness-induced boundary-layer receptivity to localized time-periodic surface nonuniformities
leading to excitation of the most amplified Görtler vortices has been studied theoretically and numerically for
two different span-wise wavelengths and in a range of frequencies of vibrations, including the stationary cases
of zero frequency (i.e., the surface roughness) in accordance with the experiments in Refs. [36–38].

In the numerical model, the shape of the experimental surface nonuniformities is mimicked using the clas-
sical theory of thin-membrane bending to correspond as close as possible to the experimental membranes. The
stream-wise position of the nonuniformities and their other relevant parameters as well as the base flow (the
Blasius boundary layer) is also chosen in accordance with the experimental conditions. The computations are
based on the linear parabolic equations in the primitive variables describing the evolution of Görtler vortices.

It is shown that the modal part of disturbance in the range of parameters under investigation as used in
[37] provides a limited (approximate) information on the generation and propagation of the Görtler vortices. A
novel receptivity model has been proposed and applied. This model represents the generated vortices as a sum
of an optimal disturbance and a remainder, whose characteristics and behavior make it possible to describe
both generation and propagation of the main parts of a boundary-layer disturbance over a concave wall. At
the same time, the receptivity coefficients used in [37], estimated using the modal part of disturbance for
stream-wise-localized disturbance sources, can be reinterpreted to preserve their practical usefulness.

The experimental and theoretical coefficients of boundary-layer receptivity to surface nonuniformities at
excitation of nonstationary (in general) Görtler vortices are estimated and compared to each other for two
span-wise wavelengths in a range of frequencies. A quite good agreement of the receptivity coefficients is
found. It turned out that the amplitude of the receptivity coefficient grows with disturbance frequency, and at
higher frequencies, it can be several times greater than that found for stationary surface roughness. Variation
of the span-wise scale of surface nonuniformities affects very weakly the receptivity characteristics at the zero
frequency, while at high frequencies the efficiency of excitation of Görtler vortices depends significantly on
the span-wise scale and increases with it.

Comparison of the present theoretical and experimental results with previous studies of the boundary-layer
instability to unsteady Görtler vortices has shown that the frequency dependencies of the efficiency of the
mechanisms of linear instability and receptivity are oppositely directed, compete with each other and are able
to compensate partially each other. In practical situations, this circumstance can promote the development of
boundary-layer Görtler vortices in a broad range of frequencies.

It is important to note that the linear receptivity coefficients, being defined in Fourier space (for modes of
frequency–wave-number spectrum), are independent, in general, of the particular shape of oscillation of the
surface nonuniformities. The data obtained in the present study can be used for evaluation of initial amplitudes
of stationary and nonstationary Görtler vortices excited by surface nonuniformities, as well as for verification
of linear receptivity theories and for improvement of methods of prediction of transition location in flows
characterized by the Görtler instability.
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