

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных технологий и моделирования

Нестеров Леонид Николаевич

СРАВНЕНИЕ ЧИСЛЕННЫХ МЕТОДОВ РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ НЕЙМАНА НА ОСНОВЕ РАЗЛИЧНЫХ ИНТЕГРАЛЬНЫХ ПРЕДСТАВЛЕНИЙ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель: д.ф-м.н., профессор А. В. Сетуха

Москва, 2016

Содержание.

1. Введение
2. Постановка краевой задачи об обтекании крыла5
3. Решение задачи методом гиперсингулярных интегральных уравнений9
3.1. Интегральное представление9
3.2. Численная схема11
4. Решение задачи методом интегральных уравнений Фредгольма 2-го рода.15
4.1. Интегральное представление15
4.2. Численная схема16
5. Результаты19
6. Использованная литература

1. Введение.

Интегральные уравнения широко используются при решении задач математической физики. Одним из приложений граничных интегральных уравнений являются вихревые (панельные) методы аэродинамики. Такие методы позволяют решать задачу об обтекании крыла с малым углом атаки в рамках модели идеальной несжимаемой жидкостью. В этих методах записываются интегральные уравнения на поверхности крыла (см. [1-8]).

Постановка задач в практических приложениях связана с идеализацией геометрии объектов, имеющих малую толщину. Однако, часто возникают задачи, когда полное пренебрежение толщиной объекта нежелательно.

Рис. 1.1. Части крыла, на которых возникают проблемы.

При этом наблюдается следующая проблема. С одной стороны, при решении внешней краевой задачи в области вне поверхности телесного объекта малой толщины возникают граничные интегральные уравнения на замкнутой поверхности, которые вырождаются (перестают иметь смысл) при стремлении толщины этого объекта к нулю. При численном решении необходимо использовать очень мелкие разбиения, в которых размер ячеек должен быть много меньше толщины объекта. Кроме того, размер ячеек должен обеспечивать аппроксимацию кромок объекта малого радиуса. Таким образом, размер ячеек определяется не требованием малости по отношению к общим размерам объекта, а требованием малости по отношению к его толщине и радиусу закругления кромок. При этом распространение давления по поверхности крыла, получаемое в расчётах, плохо ведёт себя в окрестности передней и задней кромок.

В связи с этим в моей работе была поставлена задача реализовать и сравнить эффективность двух вариантов численного метода для решения краевой задачи об обтекании крыла. Первый метод – решение методом гиперсингулярных интегральных уравнений, второй – решение методом уравнений Фредгольма 2 рода.

Численные методы реализованы на ЭВМ. Написанная программа позволяет решать соответствующие интегральные уравнения на разных геометриях крыла, и на основании численного решения находить распределение давления по поверхности крыла. На основе рассчитанных параметров сделан вывод о применимости обоих методов.

2. Постановка краевой задачи об обтекании крыла.

Пусть Σ есть поверхность крыла. Предположим, что Σ есть замкнутая простая кусочно-гладкая поверхность. Будем считать, что в пространстве задана декартова система координат $Ox_1x_2x_3$, в которой плоскость Ox_1x_2 это вертикальная плоскость симметрии крыла, ось Ox_1 направлена от передней кромки к задней, ось Ox_2 направлена вверх, ось Ox_3 направлена вбок так, что образуется правая система координат. Пусть также \mathbf{e}_i есть орт оси Ox_i , i = 1, ..., 3 (см. рис. 2.1).

Рис. 2.1. Схема крыла и вихревого следа.

На задней кромке крыла задается линия отрыва L и предполагается, что на этой линии образуется вихревой след, который моделируется поверхностью Σ_1 . При этом поверхность Σ_1 есть объединение всевозможных лучей вида [MN), где $M \in L$, $\overrightarrow{MN} = \alpha \mathbf{e}_1$, $\alpha \ge 0$, и $\Sigma_1 \cap \Sigma = L$. С геометрической точки зрения последнее условие означает, что каждый такой луч [MN) не пересекает поверхность крыла при своем продолжении из точки M. Обозначим Ω - область пространства вне поверхностей Σ и Σ_1 . Пусть $\mathbf{n} = \mathbf{n}(\mathbf{x})$ - орт вектора нормали к поверхностям Σ и Σ_1 , где \mathbf{x} - точка гладкости поверхности крыла Σ или поверхности Σ_1 . В случае телесного крыла будем считать, что $\mathbf{n}(\mathbf{x})$, где $\mathbf{x} \in \Sigma$, есть вектор внешней нормали. При $\mathbf{x} \in \Sigma_1$ и при $\mathbf{x} \in \Sigma$ в случае тонкого крыла полагаем, что $\mathbf{n} \mathbf{e}_2 \ge 0$ (это означает, что вектор \mathbf{n} направлен вверх).

В основе физической постановки задачи лежат предположения о том, что [9]

- задан вектор \mathbf{w}_{∞} скорости набегающего потока;
- поверхность тела является непроницаемой для жидкости; жидкость является несжимаемой, течение является безвихревым всюду вне вихревого следа, который аппроксимируется поверхностью Σ₁;
- вихревой след представляет собой поверхность Σ₁ разрыва поля скоростей, на которой нормальная компонента скорости w₂, а также компонента скорости w₁, являются непрерывными (скачек терпит только компонента w₃);
- поле скоростей должно быть ограничено на задней кромке крыла (в аэродинамике это условие известно как условие Чаплыгина-Жуковского).

В линейной теории крыла полагается, что

 $\mathbf{w}_{\infty} = W_{\infty}(\cos\alpha\cos\beta, \sin\alpha\cos\beta, \sin\beta),$

где W_{∞} - модуль вектора скорости набегающего потока, α - угол атаки, β - угол скольжения, причем, рассматривается случай, когда углы α и β малы.

С математической точки зрения необходимо найти поле скоростей жидкости $\mathbf{w} = (w_1, w_2, w_3)$ в области Ω , удовлетворяющее уравнениям:

$$div \mathbf{w} = 0, \quad rot \mathbf{w} = 0 \tag{2.1}$$

и условию на бесконечности:

$$\mathbf{w}(\mathbf{x}) - \mathbf{w}_{\infty} \to 0, \quad npu \ \rho(\mathbf{x}, \partial \Omega) \to \infty, \tag{2.2}$$

где $\rho(\mathbf{x},\partial\Omega)$ - расстояние от точки \mathbf{x} до множества $\partial\Omega = \Sigma \cup \Sigma_1$. Предполагается, что в каждой точке гладкости поверхностей Σ и Σ_1 , не лежащей на краю этих поверхностей, поле \mathbf{w} имеет краевые значения:

- на обеих сторонах поверхности Σ_1 ;
- на поверхности Σ со стороны области.

При этом на поверхности крыла **Σ** должно выполняться условие непротекания:

$$\mathbf{wn} = 0 \tag{2.3}$$

на поверхности $\boldsymbol{\Sigma}_1$ ставятся условия

$$w_2^+ = w_2^-, \ w_1^+ = w_1^-.$$
 (2.4)

Кроме того, в окрестности каждой точки линии отрыва $\mathbf{x} \in L$, не являющейся ее концом, поле скоростей должно быть ограничено. В окрестности любой другой линии \tilde{L} , являющейся краем поверхностей Σ и Σ_1 , или ребром поверхности Σ , должно выполняться условие:

$$\left|\mathbf{w}(\mathbf{x})\right| \le \frac{C}{\rho(\mathbf{x}, \tilde{L})^{\alpha}}$$
(2.5)

где С и $\alpha < 1$ - некоторые константы.

В силу условий (2.1) и (2.2) поле скоростей будем искать в виде

$$\mathbf{w}(x) = \mathbf{w}_{\infty} + \mathbf{w}^*$$
, где $\mathbf{w}^* = grad u$. (2.6)

Потенциал и должен являться решением следующей краевой задачи:

$$\Delta u = 0$$
 в области Ω , (2.7)

$$\frac{\partial u}{\partial n} = f$$
 на поверхности Σ с $f = -\mathbf{w}_{\infty}\mathbf{n}$. (2.8)

Из условий (2.4) возникают условия:

$$\frac{\partial(u^+ - u^-)}{\partial x_1} = 0; \quad \left(\frac{\partial u}{\partial x_2}\right)^+ = \left(\frac{\partial u}{\partial x_2}\right)^- \quad Ha \ \Sigma_1$$
(2.9)

Кроме того, ставятся условие ограниченности потенциала в области Ω и условие на бесконечности

$$u(\mathbf{x}) \to 0$$
 при $|\mathbf{x}| \to \infty$ вдоль вектора $-\mathbf{e}_1$. (2.10)

Заметим, что здесь потенциал не может стремиться к нулю вообще на бесконечности, т.к. в силу условия (2.9) при $|\mathbf{x}| \to \infty$ вдоль вектора $+\mathbf{e}_1$ разность $u^+ - u^-$ является константой и, при ненулевом решении задачи, не будет стремиться к 0. Однако, можно доказать, что при этом $u \to 0$ при удалении на бесконечность вдоль любого вектора, не параллельного $+\mathbf{e}_1$.

Поставленная задача может быть решена методом граничных интегральных уравнений с применением теории потенциала. При этом мы рассмотрим два подхода. В одном задача сводится к гиперсингулярному уравнению с интегралом, понимаемым в смысле конечного значения по Адамару. При другом подходе задача сводится к интегральному уравнению Фредгольма 2-го рода с абсолютно интегрируемым ядром.

3. Решение задачи методом гиперсингулярных интегральных уравнений.

3.1. Интегральное представление.

Неизвестный потенциал и - решение задачи (2.7)-(2.10) ищем в виде

$$u(\mathbf{x}) = U[\Sigma, g](\mathbf{x}) + U[\Sigma_1, g_1](\mathbf{x}), \qquad (3.1)$$

где $U[\Sigma, g]$ - потенциал двойного слоя с плотностью g, размещенный на поверхности Σ :

$$U[\Sigma, g](\mathbf{x}) = \int_{\Sigma} g(\mathbf{y}) \frac{\partial F(\mathbf{x} - \mathbf{y})}{\partial n_{y}} dy, \ F(\mathbf{x} - \mathbf{y}) = \frac{1}{4\pi} \frac{1}{|\mathbf{x} - \mathbf{y}|}, \quad (3.2)$$

интеграл понимается как поверхностный интеграл 1-го рода.

При этом уравнение Лапласа (2.7) выполнено автоматически, а из условий (2.8) и (2.9) возникают интегральное уравнение и условие:

$$\int_{\Sigma} g(\mathbf{y}) \frac{\partial}{\partial n_x} \frac{\partial F(\mathbf{x} - \mathbf{y})}{\partial n_y} dy + \int_{\Sigma_1} g_1(\mathbf{y}) \frac{\partial}{\partial n_x} \frac{\partial F(\mathbf{x} - \mathbf{y})}{\partial n_y} dy = f(\mathbf{x}), \quad \mathbf{x} \in \Sigma, \quad (3.3)$$
$$\frac{\partial g_1(\mathbf{x})}{\partial x_1} = 0, \quad (3.4)$$

где в уравнении (3.3) первый из интегралов следует понимать в смысле конечного значения по Адамару [10].

Поскольку поверхность Σ_1 может быть получена движением линии отрыва L вдоль оси Ox_1 , из условия (3.4) следует, что функция g_1 определяется своими значениями на этой линии.

Потенциал двойного слоя вида (3.1) определен и в области, внутренней по отношению к поверхности крыла Σ . Для краевых значений потенциала *и* выполнено соотношение

$$u^{+} - u^{-} = g$$
 Ha $\Sigma, u^{+} - u^{-} = g_1$ Ha $\Sigma_1.$ (3.5)

Далее, в силу ограниченности поля скоростей на линии отрыва, для каждой точки $\mathbf{x}_0 \in L$ и для каждой достаточно малой окрестности этой точки $U(\mathbf{x}_0)$, которая при пересечении с областью Ω распадается на две области $U_1(\mathbf{x}_0)$ и $U_2(\mathbf{x}_0)$ (верхнюю и нижнюю по отношению к поверхностям крыла и вихревого следа), потенциал *и* имеет пределы в точке \mathbf{x}_0 при $\mathbf{x} \to \mathbf{x}_0$ по каждой из этих областей. Тогда на линии отрыва справедливы соотношения:

$$g_1(\mathbf{x}) = g^+(\mathbf{x}) - g^-(\mathbf{x}), \ x \in L,$$
 (3.6)

где $g^+(\mathbf{x})$ - предельное значение функции g в точке $\mathbf{x} \in L$ на верхней поверхности крыла, $g^-(\mathbf{x})$ - на нижней поверхности. Кроме того, плотность потенциала двойного слоя g определена с точностью до постоянного слагаемого [11]. Для выделения единственного решения в случае замкнутой поверхности Σ можно использовать условие

$$\int_{\Sigma} g(\mathbf{x}) dx = G, \qquad (3.7)$$

где G - произвольная константа.

Рис. 3.1. Расположение ячеек на крыле.

3.2. Численная схема.

Уравнения (3.3)-(3.7) относительно неизвестных плотностей потенциала двойного слоя g и g_1 можно решить численно методом вихревых рамок. Опишем схему этого метода, следуя работе [12].

Поверхность Σ аппроксимируется ячейками σ_i , i = 1, ..., n, имеющими четырехугольную форму. Пусть S_j - площадь ячейки σ_j . В центре каждой ячейки σ_i , под которым понимается пресечение отрезков, соединяющих середины противоположных сторон ячейки, размещаем контрольную точку \mathbf{x}_i и строим вектор нормали к ячейке $\mathbf{n}_i = \mathbf{n}(\mathbf{x}_i)$. (Приближенно считается, что \mathbf{n}_i - перпендикуляр к указанным отрезкам, а площадь S_j приближенно считается как площадь параллелограмма, для которого эти отрезки есть середины сторон). Может возникнуть необходимость использовать в некоторых местах треугольные ячейки. Такие ячейки следует рассматривать как вырожденный случай четырехугольных при совпадении двух угловых точек, и контрольную точку следует помещать в середину медианы, опущенной из сдвоенной точки.

Линия отрыва предполагается состоящей из отрезков $[\mathbf{z}_i^-, \mathbf{z}_i^+]$, i = 1, ..., m, где \mathbf{z}_i^- - начало отрезка с номером i, \mathbf{z}_i^+ - конец этого отрезка. При этом начало следующего отрезка является концом предыдущего:

$$\mathbf{Z}_{i+1}^{-} = \mathbf{Z}_{i}^{+}$$

и предполагается, что отрезок $[\mathbf{z}_i^-, \mathbf{z}_i^+]$ является стороной ячейки с номером $j_{sep}^+(i)$ на верхней поверхности и стороной ячейки с номером $j_{sep}^-(i)$ на нижней поверхности.

Построим разбиение поверхности Σ_1 на полубесконечные ячейки, которые затем аппроксимируем конечными ячейками большой длинны $\sigma_j^1 \equiv \sigma_{n+j}, \quad j = 1,...,m,$ так, что σ_j^1 есть четырехугольник с вершинами $\mathbf{z}_i^-, \mathbf{z}_i^+, \mathbf{q}_i^+, \mathbf{q}_i^-,$ где $\mathbf{q}_i^+ = \mathbf{z}_i^+ + D\mathbf{e}_1, \mathbf{q}_i^- = \mathbf{z}_i^- + D\mathbf{e}_1$, где D - некоторое большое число.

Приближенное распределение плотности потенциала двойного слоя ищем в виде кусочно-постоянной функции, принимающей постоянное значение g_i , i = 1, ..., n + m, на каждой из ячеек разбиения.

Пусть \mathbf{V}_{j} - градиент потенциала двойного слоя с плотностью $g_{0} = -1$, размещенного на поверхности σ_{j} с краем. По закону Био-Савара [13] векторное поле \mathbf{V}_{j} представляется как поле скоростей, индуцируемое вихревой нитью с циркуляцией $\Gamma_{0} = 1$, размещенной на контуре $\partial \sigma_{j}$ - краю поверхности σ_{j} :

$$\mathbf{V}_{j}(\mathbf{x}) = \left(\operatorname{grad} U[\sigma_{j}, g_{0}] \right)(\mathbf{x}) = -\frac{1}{4\pi} \int_{\partial \sigma_{j}} \frac{\mathbf{\tau}_{y} \times \left(\mathbf{r}_{x} - \mathbf{r}_{y}\right)}{\left|\mathbf{x} - \mathbf{y}\right|^{3}} ds_{y} \qquad (3.8)$$

где \mathbf{r}_x и \mathbf{r}_y - радиус векторы точек **x** и **y**, ds_y - элемент длины дуги, $\mathbf{\tau}_y$ - орт вектора касательной на контуре $\partial \sigma_j$, причем, направление обхода контура $\partial \sigma_j$ выбирается так, что если при обходе вектор нормали **n** направлен вверх, то поверхность остается слева. Заметим, что если $\partial \sigma_j$ есть ломаная линия, интеграл в правой части формулы (3.8) вычисляется аналитически [13].

При этом скорость жидкости в каждой точке $x \in \Omega$ аппроксимируется выражением

$$\mathbf{w}_{\infty}(\mathbf{x}) = \mathbf{w}_{\infty} + \sum_{j=1}^{n+m} g_j \mathbf{V}_j(\mathbf{x}) = \mathbf{w}_{\infty} - \sum_{j=1}^{n+m} \Gamma_j \mathbf{V}_j(\mathbf{x}), \qquad (3.9)$$

где Г_j есть циркуляция вихревой нити (вихревой рамки), размещенной по контуру ячейки σ_j , связанная со значениями потенциала двойного слоя формулой

$$\Gamma_{j} = -g_{j}, \ j = 1, ..., n + m.$$
 (3.10)

Неизвестные циркуляции вихревых рамок, в случае задачи об обтекании тонкого крыла, ищутся из системы линейных уравнений, которые аппроксимируют уравнение (3.3), записанное в точках коллокации \mathbf{x}^{i} , i = 1, ..., n, и соотношения (3.5):

$$\sum_{j=1}^{n+m} a_{ij} \Gamma_j = f_i, \ i = 1, ..., n,$$
(3.11)

$$\Gamma_{n+i} = s(i)\Gamma_{j_{sep}(i)}$$
, $i = 1,...,m$, (3.12)

$$a_{ij} = -\mathbf{V}_j(\mathbf{x}^i)\mathbf{n}^i, \ i = 1,...,n, \ j = 1,...,n+m, \ f_i = -\mathbf{w}_{\infty}\mathbf{n}^i,$$
 (3.13)

s(i) - коэффициенты, указывающие на согласование ориентаций ячеек:

$$s(i) = 1$$
 при $\mathbf{n}^{i} \mathbf{n}^{j} \ge 0$, $s(i) = -1$ при $\mathbf{n}^{i} \mathbf{n}^{j} < 0$, $j = j_{sep}(i)$.

Поскольку циркуляции рамок σ_i на поверхности Σ определены с точностью до постоянного слагаемого, используется подход, основанный на записи дополнительного уравнения и введения регуляризирующей переменной γ_0 [13]:

$$\gamma_0 + \sum_{j=1}^{n+m} a_{ij} \Gamma_j = f_i, \ i = 1, ..., n,$$
(3.14)

$$\sum_{j=1}^{n} \Gamma_j S_j = 0 \tag{3.15}$$

$$\Gamma_{n+i} = s^{+}(i)\Gamma_{j_{sep}^{+}(i)} + s^{-}(i)\Gamma_{j_{sep}^{-}(i)} , i = 1,...,m,$$
(3.16)

коэффициенты и правые части уравнений (3.14) определяются формулами (3.13),

$$s^{+}(i) = 1$$
 при $\mathbf{n}^{i}\mathbf{n}^{j} \ge 0$, $s^{+}(i) = -1$ при $\mathbf{n}^{i}\mathbf{n}^{j} < 0$, $j = j^{+}_{sep}(i)$,
 $s^{-}(i) = 1$ при $\mathbf{n}^{i}\mathbf{n}^{j} \ge 0$, $s^{-}(i) = -1$ при $\mathbf{n}^{i}\mathbf{n}^{j} < 0$, $j = j^{-}_{sep}(i)$.

Решение задачи методом интегральных уравнений Фредгольма 2-го рода.

4.1. Интегральное представление.

Неизвестный потенциал *и* - решение задачи (2.7)-(2.10) ищем в том же виде (3.1), как и в предыдущем случае.

Рассмотрим внутреннюю задачу Неймана для уравнения Лапласа (2.7) с граничным условием:

$$\left(\frac{\partial u}{\partial n}\right)^{-} = -\vec{w}_{\infty} \cdot \vec{n}. \tag{4.1}$$

Правая часть представляется в виде:

$$-\vec{w}_{\infty}\cdot\vec{n}=-\frac{\partial U_{0}}{\partial n},$$
 где $U_{0}=\vec{w}_{\infty}\cdot\vec{r}_{\chi}.$ (4.2)

Тогда $u = -U_0$ есть частное решение такой внутренней задачи, а общее решение имеет вид $u = -U_0 + c$, c – произвольное. Положим c = 0. В таком случае решение, для искомого потенциала мы имеем внутреннюю задачу Дирихле:

$$\Delta u = 0 \tag{4.3}$$

$$u^- = -U_0 \tag{4.4}$$

Если искать решение этой задачи в виде потенциала двойного слоя, то этот потенциал, как уже отмечалось, определяется не только внутри, но и снаружи крыла, и снаружи будут выполнены условия (2.7)-(2.10). Таким образом для потенциала в виде (3.1) на поверхности Σ выполняются условия $u^- = u - \frac{1}{2}g_i$, тогда вместо задачи Неймана получим внутреннюю задачу Дирихле.

$$-\frac{1}{2}g(x) + \int_{\Sigma} g(y) \frac{\partial F(x-y)}{\partial n_y} d\sigma_y + \int_{\Sigma_1} g(y) \frac{\partial F(x-y)}{\partial n_y} d\sigma_y = -U_0(x)$$
(4.5)

$$\frac{\partial g_1}{\partial x_1} = 0; \ g_1 = g \text{ Ha L.}$$

$$(4.6)$$

4.2. Численная схема.

Аналогично предыдущей схеме, поверхность \sum аппроксимируется четырёхугольными ячейками σ_i , i = 1, ..., n. Пусть S_j - площадь ячейки σ_j . В центре каждой ячейки σ_i , под которым понимается пресечение отрезков, соединяющих середины противоположных сторон ячейки, размещаем контрольную точку \mathbf{x}_i и строим вектор нормали к ячейке $\mathbf{n}_i = \mathbf{n}(\mathbf{x}_i)$.

Линия отрыва предполагается состоящей из отрезков $[\mathbf{z}_i^-, \mathbf{z}_i^+]$, i = 1, ..., m, где \mathbf{z}_i^- - начало отрезка с номером i, \mathbf{z}_i^+ - конец этого отрезка. При этом начало следующего отрезка является концом предыдущего:

$$\mathbf{Z}_{i+1}^- = \mathbf{Z}_i^+$$

и предполагается, что отрезок $[\mathbf{z}_i^-, \mathbf{z}_i^+]$ является стороной ячейки с номером $j_{sep}^+(i)$ на верхней поверхности и стороной ячейки с номером $j_{sep}^-(i)$ на нижней поверхности.

Построим разбиение поверхности Σ_1 на полу бесконечные ячейки, которые затем аппроксимируем конечными ячейками большой длинны $\sigma_j^1 \equiv \sigma_{n+j}, \quad j = 1,...,m,$ так, что σ_j^1 есть четырехугольник с вершинами $\mathbf{z}_i^-, \mathbf{z}_i^+, \mathbf{q}_i^+, \mathbf{q}_i^-,$ где $\mathbf{q}_i^+ = \mathbf{z}_i^+ + D\mathbf{e}_1, \mathbf{q}_i^- = \mathbf{z}_i^- + D\mathbf{e}_1$, где D - некоторое большое число.

Приближенное распределение плотности потенциала двойного слоя ищем в виде кусочно-постоянной функции, принимающей постоянное значение g_i , i = 1, ..., n + m, на каждой из ячеек разбиения:

$$u(x) = \sum_{i=1}^{n+m} g_i u_i(x),$$

где $u_i(x)$ - потенциал двойного слоя с плотностью равной 1, размещенного на ячейке σ_i :

$$u_i(x) = \int_{\sigma_i} \frac{\partial F(x-y)}{\partial n_y} d\sigma_y$$
(4.7)

На основе (4.7) можно осуществить дискретизацию системы уравнений (4.5)-(4.6):

$$-\frac{1}{2}g_i + \sum_{j=1}^{n+m} g_j a_{ij} = -\nu_0(x_i)$$
(4.8)

$$g_{n+k} = g_{j^+(k)} - g_{j^-(k)}$$
, где $a_{ij} = u_j(x_i)$ (4.9)

Для вычисления функций $u_j(x_i)$ будем пользоваться тем, что потенциал двойного слоя $u_j(x_i)$ с постоянной плотностью равен телесному углу, под которым ячейка σ_j видна из точки x_i (если ячейка видна со стороны положительной нормали, то угол считается положительным, иначе отрицательным). Для вычисления телесного угла φ разобьём ячейку на два треугольника и воспользуемся формулой, выражающей телесный угол через двугранные углы:

$$\alpha + \beta + \gamma - \pi = \varphi$$
, где α, β, γ – двугранные углы (4.10)

Покажем вычисление одного из двухгранных углов (остальные вычисляются аналогично).

Рис. 4.1. Телесный угол OABC: О – точка коллокации (x_i), ABC – треугольник.

Рис. 4.2. Вычисление двугранных углов.

Тогда искомый угол вычисляется следующим образом:

$$\vec{n}_{1} = \frac{\overrightarrow{OA} \times \overrightarrow{OC}}{\left|\overrightarrow{OA} \times \overrightarrow{OC}\right|}$$
$$\vec{n}_{2} = \frac{\overrightarrow{OA} \times \overrightarrow{OB}}{\left|\overrightarrow{OA} \times \overrightarrow{OB}\right|}$$
$$\cos \alpha = \vec{n}_{1}\vec{n}_{2}$$

Заметим, что здесь соs *α* может быть больше 1 или меньше -1, при численной реализации этих формул на ЭВМ из-за вычислительных погрешностей, при этом берём соs *α* равным 1 или -1 соответственно. Сам угол находим, применяя функцию арккосинуса.

5. Результаты.

Используя полученные решения численные решения систем линейных уравнений (3.14)-(3.16) и (4.8)-(4.9), можно найти приближенное представление поля скоростей жидкости по формулам (3.9). Далее можно рассчитать коэффициенты давления, оказываемого на каждую ячейку.

$$cp_j = 1 - 4 rac{|ec w|^2}{|ec w_\infty|^2}$$
, $ec w = ec w(x_j)$ – полная скорость

Были проведены расчеты обтекания модельного крыла прямоугольной формы в плане с удлинением равным 5. Расчёты были проведены с углами атаки в 5 и 10 градусов, на разбиениях с различным количеством ячеек: 10 на 20 ячеек, 20 на 20 и 40 на 40. Ниже приводятся графики распределения давления в срединном сечении на верхней и нижней поверхностях при разных углах атаки. На каждом рисунке (5.2)-(5.9) представлены графики зависимости *ср* от *x* ($x \in [0; 1]$ и совпадает с осью Ox_1) для разных методов, разных поверхностей и разных углов атаки. Каждый график содержит три линии, отвечающие разным разбиениям поверхности.

Рис 5.1. Геометрия крыла.

Рис. 5.2. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 1, верхняя поверхность, угол атаки 5 градусов.

Рис. 5.3. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 2, верхняя поверхность, угол атаки 5 градусов.

Рис. 5.4. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 1, нижняя поверхность, угол атаки 5 градусов.

Рис. 5.5. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 2, нижняя поверхность, угол атаки 5 градусов.

Рис. 5.6. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 1, верхняя поверхность, угол атаки 10 градусов.

Рис. 5.7. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 2, верхняя поверхность, угол атаки 10 градусов.

Рис. 5.8. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 1, нижняя поверхность, угол атаки 10 градусов.

Рис. 5.9. Распределение коэффициента давления по поверхности крыла в срединном сечении. Метод 2, нижняя поверхность, угол атаки 10 градусов.

Далее рассмотрим, насколько хорошо распределение давления, полученное с В каждом методе, совпадает экспериментальным распределением давления [14]. Используемые экспериментальные данные представляют собой распределение давления в срединном сечении с той же геометрией с углом атаки 5 градусов. На рисунках (5.10) и (5.11) представлены графики зависимости коэффициента давления ср от х.

Рис. 5.10. Распределение коэффициента давления по поверхности крыла в срединном сечении, верхняя поверхность.

Рис. 5.11. Распределение коэффициента давления по поверхности крыла в срединном сечении, нижняя поверхность.

Из полученных графиков можно сделать несколько выводов:

- Метод, основанный на интегральных уравнениях Фредгольма, даёт более хорошие результаты на грубой сетке.

- Вдали от кромок крыла оба метода точны.

- В окрестности задней кромки крыла, метод, основанный на интегральных уравнениях Фредгольма даёт результаты, лучше согласующиеся с экспериментом.

-В окрестности передней кромки несколько лучшее согласование с экспериментальными данными дает метод, основанный на гиперсингулярных интегральных уравнениях.

6. Использованная литература.

- 1. Clark R. P., Smits A. J. Thrust production and wake structure of a batoidinspired oscillating . // J. Fluid Mech. - 2006. - V. 562, p. 415-429.
- Cottet G.-H., Koumoutsakos P., Vortex methods: theory and practice. -Cambridge University Press. – 2000. - 320 p.
- Fearn R.L. Airfoil Aerodynamics Using Panel Methods. // The Matematica Journal. - 2008. - V.10 (4), p.725-739.
- Jee W.K., Soo H.P., Yung H.Y. Euler and Navier-Stokes simulations of helicopter rotor blade in forward _ight using an overlapped grid solver. // in 19th AIAA computational, fluid dynamics. - 2009. - AAIA 2009-4268, p. 1-13.
- Katz J., Plotcin A. Low-speed aerodynamics. Cambridge Aerospace Series (No. 13), 2nd ed., New York: Cambridge University Press, 2001. - 613c.
- Seong Y.W., Seongkyu L., Duck J.L., Potential panel and time- marching free-wake coupling analysis for helicopter rotor. // J. Aircraft. - 2009. - V. 46 (3), p. 1030-1041.
- Писарев И.В., Сетуха А.В. Снесение граничного условия на срединную поверхность при численном решении краевой задачи линейной теории крыла // Вычислительные методы и программирование, 2014, №15, с.109-120.
- David J. Willis, Jaime Peraire*, Jacob K. White A combined pFFTmultipole tree code, unsteady panel method with vortex particle wakes. // Int. J. Numer. Meth. Fl. - 2007. - V. 53 (8), p. 1399-1422.
- Валландер С.В. Лекции по гидроаэромеханике. Учеб. пособие. Издво Ленингр. Ун-та. – 1978. – 296 с.
- 10.Вайникко Г.М., Лифанов И.К., Полтавский Л.Н. Численные методы в гиперсингулярных интегральных уравнениях и их приложения. – М.: Янус-К,2001, - 508с.

- 11.Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М. Мир. 1987 (пер. с англ.). 311 с.
- 12.Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М.: Наука. 1995. 520с.
- 13.Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика.Ч.1, изд. шестое. М.: Физматгиз, 1963. 584 с.
- 14.Атлас аэродинамических характеристик. Издание БНТ НКАТ при ЦАГИ, 1940, 340 с.