ЗАДАЧИ 2009 ГОДА

- 1. L линейное подпространство матриц из $\mathbb{C}^{n\times n}$ с двумя свойствами: (1) AB=BA для всех $A,B\in L$; (2) $A^2=0$ для всех $A\in L$. Докажите, что $\dim L\leq n^2/4$.
- 2. Дана матрица $A \in \mathbb{R}^{m \times n}$. Доказать замкнутость множества

$$\{y = Ax, x = [x_1, \dots, x_n]^\top, x_1, \dots, x_n \ge 0\}.$$

- 3. Пусть \mathcal{M}_p множество всех комплексных $n \times n$ -матриц A таких, что $||Ax||_p = ||x||p$ для любого $x \in \mathbb{C}^n$. Доказать, что для всех $p \neq 2$ множество \mathcal{M}_p одно и то же и совпадает с множеством матриц вида DP, где D диагональная матрица с элементами $|d_{ii}| = 1$, а P матрица перестановки.
- 4. Докажите, что функционал f(p) = p'(0) (значение производной многочлена p(t) при t = 0) на линейном пространстве многочленов p(t) с нормой $||p|| = \max_{-1 \le t \le 1} |p(t)|$ не будет ограниченным.
- 5. Даны компактные выпуклые множества $L\subset\mathbb{R}^m,\,M\subset\mathbb{R}^n$ и матрица $A\in\mathbb{R}^{m\times n}$. Доказать, что

$$\max_{x \in \mathbb{R}^n} \min_{y \in \mathbb{R}^m} y^\top A x = \min_{y \in \mathbb{R}^m} \max_{x \in \mathbb{R}^n} y^\top A x.$$

6. Пусть $a_1, \ldots, a_m \in \mathbb{R}^n$. Докажите, что пересечение полупространств

$$a_1^{\top} x \leq c_1, \ldots, a_m^{\top} x \leq c_m$$

пусто тогда и только тогда, когда для некоторых $\alpha_1, \ldots, \alpha_m \geq 0$ выполняются равенства

$$\alpha_1 a_1 + \ldots + \alpha_m a_m = 0, \qquad \alpha_1 c_1 + \ldots + \alpha_m c_m = -1.$$

- 7. Пусть $A = [a_{ij}]$ и $D = [d_{ij}]$ комплексные матрицы порядка n, при этом D диагональная матрица с элементами $d_{ii} = a_{ii}$ при $1 \le i \le n$. Докажите, что если $||A||_2 = ||D||_2$, то нулевых элементов в матрице A не меньше, чем 2n-2.
- 8. Пусть L нижняя треугольная матрица с нижней треугольной частью, взятой из матрицы $A \in \mathbb{C}^{n \times n}$. Докажите, что

$$||L||_2 \le \log_2 2n \, ||A||_2.$$

- 9. Докажите, что матрица порядка n>1 имеет конечное число инвариантных подпространств в том и только том случае, когда каждому собственному значению соответствует ровно одна жорданова клетка.
- 10. Матрицы A и B порядка n коммутируют. Докажите, что существуют невырожденные матрицы P и Q такие, что $PAQ = \begin{bmatrix} I_k & 0 \\ 0 & N \end{bmatrix}$ и $PBQ = \begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$, где блоки I_k, X и N, Y имеют порядок k и n-k, соответственно, и, кроме того, матрица I_k единичная, а N нильпотентная.
- 11. Пусть $A = A^{\top} \in \mathbb{C}^{n \times n}$. Докажите, что матрица A обладает сингулярным разложением $A = V \Sigma U^*$ с дополнительным условием $U^* = V^{\top}$.
- 12. Пусть $\sigma_1 \geq ... \geq \sigma_n$ сингулярные числа $n \times n$ -матрицы

$$A = \begin{bmatrix} 1 & 2 & & & \\ & 1 & 2 & & \\ & & \ddots & \ddots & \\ & & & 1 & 2 \\ & & & & 1 \end{bmatrix}.$$

Докажите, что $1 \le \sigma_{n-1} \le ... \le \sigma_1 \le 3$ и, кроме того, $0 < \sigma_n < 2^{-n+1}$.

13. Известно, что $A = A^* > B = B^* \ge 0$. Докажите, что $A^{1/2} > B^{1/2}$.