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ON THE CONEIGENVALUES AND SINGULAR VALUES OF A COMPLEX SQUARE
MATRIX

Kh. D. Ikramov∗ UDC 512

It is shown that the coneigenvalues of a matrix, when properly defined (in a way different from the one commonly
used in the literature), obey relations similar to the classical inequalities between the (ordinary) eigenvalues and
singular values. Several interesting spectral properties of conjugate-normal matrices are indicated. This matrix class
plays the same role in the theory of unitary congruences as the class of normal matrices plays in the theory of
unitary similarities. Bibliography: 5 titles.

1. Introduction

Matrices A, B ∈ Mn(C) are said to be consimilar if A = SBS
−1

for a nonsingular matrix S ∈ Mn(C). As
usual, the bar over the symbol of a matrix means elementwise conjugation. Unitary congruence is an important
particular case of consimilarity where S = U is a unitary matrix and A = UBUT .

In accordance with the definition given in [1, Sec. 4.6] (slightly modified to suit our purposes), a scalar µ ∈ C
and a nonzero vector x ∈ Cn are called a coneigenvalue and a coneigenvector (associated with µ) of a matrix A,
respectively, if

Ax = µx. (1)

It can be shown (see [1, Sec. 4.6]) that µ is a coneigenvalue of A if and only if |µ|2 is an (ordinary) eigenvalue of
AA. Therefore, if AA has no real nonnegative eigenvalues, then A has no coneigenvalues. If µ is a coneigenvalue,
then, for all θ ∈ R, eiθµ also is a coneigenvalue. Hence if A has a coneigenvalue, then it has infinitely many
of them. By contrast, a matrix of order n always has exactly n (ordinary) eigenvalues if their multiplicities are
counted. It follows that the set of coneigenvalues is inconvenient to work with.

In Sec. 2 of this paper, we suggest a different definition of coneigenvalues. In accordance with this definition,
any matrix of order n has exactly n coneigenvalues (with account for their multiplicities). It turns out that
certain relations between the (ordinary) eigenvalues and matrix norms and also between the eigenvalues and the
singular values have counterparts for the coneigenvalues.

Some classical inequalities, such as the Schur inequality or the additive Weyl inequalities, become equalities
for a normal matrix A. In Sec. 3, we show that in the case of coneigenvalues, similar equalities hold for the
conjugate-normal matrices. In the theory of unitary congruences, this matrix class plays a role similar to that
of the normal matrices in the theory of unitary similarities. Other analogous properties of matrices in these two
classes are also indicated.

2. Inequalities between the coneigenvalues and the singular values

Given a matrix A ∈ Mn(C), we associate with it the matrices

AL = AA (2)

and
AR = AA. (3)

Although, in general, the products AB and BA need not be similar, the matrices AL and AR always are similar
(see [1, Sec. 4.6, Problem 9]). Therefore, in the subsequent discussion of spectral properties of these matrices, it
will be sufficient to consider only one of them, say, AL.

The spectrum of AL has the following remarkable properties.
1. It is symmetric about the real axis. Moreover, the eigenvalues λ and λ are of the same multiplicity.
2. The negative real eigenvalues of AL (if any) are necessarily of even algebraic multiplicity.
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For the proofs of these properties, we refer the reader to [1, Sec. 4.6, Problems 5–7].
Let

λ(AL) = {λ1, . . . , λn} (4)

be the spectrum of AL and let
ρ(A) = max{|λ|, λ ∈ λ(A)}

denote the spectral radius of A.

Definition 1. The coneigenvalues of A are the n scalars µ1, . . . , µn defined as follows:

• if λi ∈ λ(AL) does not lie on the negative real semi-axis, then the corresponding coneigenvalue µi is
defined as the square root of λi with nonnegative real part, and the multiplicity of µi is that of λi, i.e.,

µi = λ
1
2
i , Reµi ≥ 0; (5)

• with a real negative eigenvalue λi ∈ λ(AL) we associate two conjugate purely imaginary coneigenvalues

µi = ±λ
1
2
i , (6)

the multiplicity of each of them being half the multiplicity of λi.

The set
cλ(A) = {µ1, . . . , µn} (7)

is called the conspectrum of A.

The coneigenvalues of a matrix A allow for another interpretation. Define the matrix

Â =
[

0 A
A 0

]
. (8)

Proposition 1. Let µ1, . . . , µn be the coneigenvalues of an n × n matrix A. Then

λ(Â) = {µ1, . . . , µn,−µ1, . . . ,−µn}. (9)

Proof. The assertion desired follows from two observations. First, we have Â2 = AR ⊕ AL, which implies that
any eigenvalue of Â is a square root of an eigenvalue of AL. Second, the characteristic polynomial ϕ(λ) of Â is
given by

ϕ(λ) = det(λI2n − Â) = det(λ2In − AL) = det(λ2In − AR).

Thus, if λ is an eigenvalue of Â, then −λ also is an eigenvalue of Â, and both of them have the same multiplicity.
�

For the rest of this section, we adopt the following conventions.
1. The singular values of A are arranged in nonincreasing order, i.e.,

σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A), (10)

whence
σmax(A) = σ1(A) = ||A||2. (11)

2. The coneigenvalues of A are numbered in nonincreasing order of their absolute values, i.e.,

|µ1(A)| ≥ |µ2(A)| ≥ . . . ≥ |µn(A)|. (12)

3. The same conventions apply to the singular values and eigenvalues of Â, i.e.,

σ1(Â) ≥ σ2(Â) ≥ . . . ≥ σ2n(Â), (13)

|λ1(Â)| ≥ |λ2(Â)| ≥ . . . ≥ |λ2n(Â)|. (14)
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In view of (9), we have
|λ2i−1(Â)| = |λ2i(Â)| = |µi(A)|, i = 1, 2, . . . , n. (15)

Note that Â has the same singular values as A ⊕ A, and A has the same singular values as A. Consequently,
the singular values of Â are those of A repeated twice. Thus,

σ2i−1(Â) = σ2i(Â) = σi(A), i = 1, 2, . . . , n. (16)

Finally, we define the conspectral radius of A as follows:

cρ(A) = |µ1(A)|. (17)

Proposition 2. Let || · || be an absolute matrix norm. Then

cρ(A) ≤ ||A||. (18)

Proof. We have
cρ2(A) = |µ1(A)|2 = ρ(AA) ≤ ||AA|| ≤ ||A|| ||A|| = ||A||2.

�
The spectral norm is not absolute. However, inequality (18) holds true for the spectral norm as well.

Proposition 3. The following inequality is valid:

cρ(A) ≤ ||A||2. (19)

Proof. For any submultiplicative matrix norm || · ||, we have ρ(Â) ≤ ||Â||, implying that

|λ1(Â)| ≤ σ1(Â).

In view of (11) and (15)–(17), this is the desired inequality (19) in disguised form. �

Remark. In a personal communication, R. Horn indicated to the author that Propositions 2 and 3 can be
united and strengthened under the assumption that for the matrix norm used, ||A|| = ||A||. Indeed, in this more
general case, the proof of Proposition 2 remains the same. In particular, not only the spectral norm but all the
unitarily invariant norms are covered.

Proposition 4. The coneigenvalues satisfy the inequality

n∑
i=1

|µi(A)|2 ≤ ||A||2F . (20)

Proof. In application to Â, the well-known Schur inequality yields

2n∑
i=1

|λi(Â)|2 ≤ ||Â||2F . (21)

Obviously,
||Â||2F = 2||A||2F ,

which, together with (15), shows that (21) is equivalent to (20). �
Since

||A||2F =
n∑

i=1

σ2
i (A),

relation (20) can be regarded as an inequality between the coneigenvalues of A and its singular values. From
this point of view, the following theorem is an extension of Proposition 4.
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Theorem 1. For 1 ≤ m ≤ n and an arbitrary real nonnegative δ,

m∑
i=1

|µi(A)|δ ≤
m∑

i=1

σδ
i (A). (22)

Proof. By applying the additive Weyl inequalities (see [2, Sec. II.4.2]) to Â, we obtain

�∑
i=1

|λi(Â)|δ ≤
�∑

i=1

σδ
i (Â), 1 ≤ � ≤ 2n. (23)

Setting � = 2m (1 ≤ m ≤ n) in (23) and taking into account (15) and (16), we arrive at (22). �
We conclude this section with the following simple but useful result.

Proposition 5. Let A be a block triangular matrix of the form

A =
[

A11 A12

0 A22

]
.

Then
cλ(A) = cλ(A11) ∪ cλ(A22). (24)

Of course, (24) also holds for a lower block triangular matrix. Moreover, analogous equalities are valid not
only for 2 × 2 block triangular matrices but for all block orders.

3. Conjugate-normal matrices

The role of normal matrices in the theory of unitary similarities is well known. It is related to the fact that
the normal matrices are exactly the matrices that can be brought to the simplest (diagonal) form by unitary
similarity transformations. The conjugate-normal matrices (c.n. matrices) play a similar role in the theory of
unitary congruences.

Definition 2. A matrix A ∈ Mn(C) is said to be conjugate-normal if

AA∗ = A∗A. (25)

Seemingly, the class of c.n. matrices was first introduced in [3]. A canonical form for c.n. matrices with
respect to unitary congruence transformations was also found in [3].

Theorem 2. Any conjugate-normal matrix A ∈ Mn(C) can be brought by a proper unitary congruence trans-
formation to a block diagonal matrix with diagonal blocks of orders 1 and 2. The 1×1 blocks are the nonnegative
coneigenvalues of A. Each 2× 2 block corresponds to a pair of complex conjugate coneigenvalues µj = ρje

iθj , µj

and is of the form [
0 ρj

ρje
−i2θj 0

]
(26)

or [
0 µj

µj 0

]
. (27)

The block diagonal matrix described in Theorem 2 is called the canonical form of the c.n. matrix A. The
form (26) of its 2 × 2 blocks was used in [3], whereas the alternative form (27) was given in [4].

Complex symmetric, skew-symmetric, and unitary matrices are special cases of c.n. matrices. From the
classical Takagi theorem (see [1, Sec. 4.4]) it follows that the coneigenvalues of a symmetric matrix are identical
to its singular values. The coneigenvalues of a unitary matrix U , being the square roots of the (ordinary)
eigenvalues of the unitary matrix UU , have unit absolute values; on the other hand, all the singular values of U
are equal to one. This relation between the coneigenvalues and the singular values holds for the entire class of
c.n. matrices.
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Proposition 6. The singular values of a conjugate-normal matrix A are the absolute values of its coneigenvalues.

Proof. The relation desired is readily obtained by inspecting the canonical form of A. Indeed, the nonnegative
coneigenvalues (i.e., the 1 × 1 blocks in the canonical form) are singular values of A. On the other hand, the
singular spectrum of matrix (27) is the scalar |µj| repeated twice. �

Corollary 1. For a conjugate-normal matrix A, inequalities (19), (20), and (22) hold with equality.

Remark. As was shown in [5], the equality in (20) can be attained only for a conjugate-normal matrix A.

In conclusion, we discuss another interesting property of the c.n. matrices. First we recall that the Toeplitz
(or Cartesian) decomposition of a complex square matrix A is defined as the representation

A = B + C, B = B∗, C = −C∗. (28)

The matrices B and C, called the real and imaginary parts of A, respectively, are uniquely determined by the
equalities

B =
1
2
(A + A∗), C =

1
2
(A − A∗).

The usefulness of the Toeplitz decomposition is related to the fact that it is respected by unitary similarity
transformations in the following sense: for a unitary matrix U , the matrices U∗BU and U∗CU are the real and
imaginary parts of U∗AU, respectively; in addition, under the transformation with the matrix U , all the three
matrices A, B, and C preserve their eigenvalues.

The representation
A = S + K (29)

of a matrix A, where

S =
1
2
(A + AT ) and K =

1
2
(A − AT ) (30)

are a symmetric and a skew-symmetric matrices, called the symmetric and skew-symmetric parts of A, respec-
tively, will be referred to as its SSS (meaning Symmetric-Skew-Symmetric) decomposition. Decomposition (29),
(30) is the counterpart of the Toeplitz decomposition for the theory of unitary congruences.

Decomposition (29), (30) is respected by unitary congruence transformations in the sense that for a unitary
U , the matrices UT SU and UT KU are the symmetric and skew-symmetric parts of the matrix UT AU , respec-
tively. Moreover, the coneigenvalues of the three matrices A, S, and K are preserved under unitary congruence
transformations.

Theorem 3. Let A be a conjugate-normal matrix with SSS decomposition (29), (30). Then the coneigenvalues
of the matrices S and K are the real and imaginary parts, respectively, of the coneigenvalues of A.

Proof. This can readily be seen by inspecting the canonical form of A. If µ is a 1×1 block in the canonical form,
then, obviously, its SSS decomposition is

µ = µ + 0.

If µj = xj + iyj is a complex coneigenvalue of A, then the SSS decomposition of matrix (27) is of the form

Sj + Kj ,

where

Sj =
[

0 xj

xj 0

]
(31)

and

Kj =
[

0 iyj

−iyj 0

]
. (32)

The conspectrum of matrix (31) is the scalar xj repeated twice, whereas matrix (32) has the coneigenvalues iyj

and −iyj . �

Translated by Kh. D. Ikramov.
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